A conceptual definition of a holonic processing framework to support the design of information fusion systems

This paper proposes a conceptual definition of an information fusion (IF) processing framework. Several concepts borrowed from complex systems theory, informational philosophy and computer sciences have been integrated to conceptualize that framework. The concepts of holon and informon developed by Koestler, Sulis, Alonso, Paggi et al. are exploited here to develop an information fusion processing framework. The proposed functional holonic structure is suitable for processing any level of information abstraction of the Joint Directors of Laboratory (JDL) data fusion model. The framework comprises the characterization of a basic element of information and the definition of an IF cell as a basic IF system unit to achieve fusion of information. The framework advocates a goal-driven approach with notions coming from business sciences to take into account quality of information for managing the fusion process. The framework is illustrated through several examples namely with an elaborated case in remote sensing.

[1]  Galina L. Rogova,et al.  Designing ontologies for higher level fusion , 2009, Inf. Fusion.

[2]  Daniel J. Garland,et al.  Situation Awareness Analysis and Measurement , 2009 .

[3]  Tom Stonier,et al.  Information and the Internal Structure of the Universe , 1990, Springer London.

[4]  Per M. Gustavsson,et al.  The road towards multi-hypothesis intention simulation agents architecture - fractal information fusion modeling , 2005, Proceedings of the Winter Simulation Conference, 2005..

[5]  Belur V. Dasarathy,et al.  Sensor fusion potential exploitation-innovative architectures and illustrative applications , 1997, Proc. IEEE.

[6]  S. Daniel,et al.  The patch test: a comprehensive calibration tool for multibeam echosounders , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[7]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[8]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[9]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[10]  Eduardo F. Nakamura,et al.  Information fusion for wireless sensor networks: Methods, models, and classifications , 2007, CSUR.

[11]  Wenji Mao,et al.  Cyber-Physical-Social Systems for Command and Control , 2011, IEEE Intelligent Systems.

[12]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[13]  Fernando Alonso Amo,et al.  Uncertainty and Randomness: A Holonic Approach , 2010, 2010 Second International Conference on Computer Engineering and Applications.

[14]  Adel Guitouni,et al.  An Essay to Characterise Information Fusion Systems , 2006, 2006 9th International Conference on Information Fusion.

[15]  Mani B. Srivastava,et al.  Building principles for a quality of information specification for sensor information , 2009, 2009 12th International Conference on Information Fusion.

[16]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  Alan N. Steinberg,et al.  Revisions to the JDL data fusion model , 1999, Defense, Security, and Sensing.

[18]  Robert M. Losee,et al.  A Discipline Independent Definition of Information , 1997, J. Am. Soc. Inf. Sci..

[19]  H. Ibrahim,et al.  An extensive review on accessing quality information , 2007, 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications.

[20]  D. Gueriot Bathymetric and side-scan data fusion for sea-bottom 3D mosaicing , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[21]  Fernando Alonso Amo,et al.  Beliefs, Certainty and Complex Systems Structure , 2010, 2010 Second International Conference on Computer Engineering and Applications.

[22]  Erik Blasch,et al.  Top ten trends in High-Level Information Fusion , 2012, 2012 15th International Conference on Information Fusion.

[23]  James P. Peerenboom,et al.  Identifying, understanding, and analyzing critical infrastructure interdependencies , 2001 .

[24]  Alan N. Steinberg,et al.  A Systems Engineering Approach for Implementing Data Fusion Systems , 2001 .

[25]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[26]  Eloi Bosse,et al.  High-Level Information Fusion Management and System Design , 2012 .

[27]  B. Solaiman Information fusion concepts: from information elements definition to the application of fusion approaches , 2001, SPIE Defense + Commercial Sensing.

[28]  Sholom M. Weiss,et al.  Data-intensive analytics for predictive modeling , 2003, IBM J. Res. Dev..

[29]  Guy H. Walker,et al.  A review of sociotechnical systems theory: a classic concept for new command and control paradigms , 2008 .

[30]  Dale A. Lambert,et al.  A blueprint for higher-level fusion systems , 2009, Inf. Fusion.

[31]  Kaiyu Wan,et al.  Dependable Context-Sensitive Services in Cyber Physical Systems , 2011, 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications.

[32]  A.-L. Jousselme,et al.  A general algebraic structure for situation analysis , 2005, 2005 7th International Conference on Information Fusion.

[33]  Ren C. Luo,et al.  Multisensor integration and fusion for intelligent machines and systems , 1995 .

[34]  R. Descartes,et al.  A Discourse on Method , 2020 .

[35]  K. Weick FROM SENSEMAKING IN ORGANIZATIONS , 2021, The New Economic Sociology.

[36]  David S Alberts,et al.  The Agility Advantage: A Survival Guide for Complex Enterprises and Endeavors , 2011 .

[37]  Didier Dubois,et al.  Uncertainty Theories: a Unified View , 2007 .

[38]  Moises Sudit,et al.  Issues and challenges in higher level fusion: Threat/impact assessment and intent modeling (a panel summary) , 2010, 2010 13th International Conference on Information Fusion.

[39]  Fakhri Karray,et al.  Multisensor data fusion: A review of the state-of-the-art , 2013, Inf. Fusion.

[40]  Subrata Das High-Level Data Fusion , 2008 .

[41]  Éloi Bossé,et al.  Information quality in information fusion , 2010, 2010 13th International Conference on Information Fusion.

[42]  James Llinas A Survey and Analysis of Frameworks and Framework Issues for Information Fusion Applications , 2010, HAIS.

[43]  Anne-Laure Jousselme,et al.  Interpreted systems for situation analysis , 2007, 2007 10th International Conference on Information Fusion.

[44]  David Nicholson Defence Applications of Agent-Based Information Fusion , 2011, Comput. J..

[45]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[46]  Erik Blasch,et al.  User information fusion decision making analysis with the C-OODA model , 2011, 14th International Conference on Information Fusion.

[47]  Christian Roux,et al.  Side-scan sonar image matching , 1998 .

[48]  David L. Hall,et al.  Human-Centered Information Fusion: Artech House Electronic Warfare Library , 2010 .

[49]  Mieczyslaw M. Kokar,et al.  Ontology-based situation awareness , 2009, Inf. Fusion.

[50]  Edward Waltz,et al.  Knowledge Management in the Intelligence Enterprise , 2003 .

[51]  Jean Roy,et al.  Concepts, Models, and Tools for Information Fusion , 2007 .

[52]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[53]  Kaisa Sere,et al.  Dependability and Computer Engineering: Concepts for Software-Intensive Systems , 2011 .

[54]  Alan N. Steinberg,et al.  Rethinking the JDL Data Fusion Levels , 2005 .

[55]  Mieczyslaw M. Kokar,et al.  Formalizing classes of information fusion systems , 2004, Inf. Fusion.

[56]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[57]  Abram N. Shulsky,et al.  Silent Warfare: Understanding the World of Intelligence , 1991 .

[58]  Dale Lambert,et al.  The Mephisto Conceptual Framework , 2008 .

[59]  Gary Riley,et al.  Expert Systems: Principles and Programming , 2004 .

[60]  Dale Lambert Grand challenges of information fusion , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[61]  Fernando Alonso Amo,et al.  A Holonic Model of System for the Resolution of Incidents in the Software Engineering Projects , 2009, 2009 International Conference on Computer and Automation Engineering.

[62]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[63]  G. Laursen,et al.  Business Analytics for Managers: Taking Business Intelligence Beyond Reporting , 2010 .

[64]  A Koestler,et al.  Ghost in the Machine , 1970 .

[65]  Christel Baier,et al.  Principles of model checking , 2008 .

[66]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[67]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[68]  Jean-Marc Le Caillec,et al.  Intensity-Based Block Matching Algorithm for Mosaicing Sonar Images , 2011, IEEE Journal of Oceanic Engineering.

[69]  Éloi Bossé,et al.  Situation analysis for decision support: A formal approach , 2007, 2007 10th International Conference on Information Fusion.

[70]  James Llinas,et al.  Revisiting the JDL Data Fusion Model II , 2004 .