Bi-Temporal Versioning of Schema in Temporal Data Warehouses

The temporal design of data warehouse (DW), which is an extension to multidimensional model gives a provision to implement the solution to handle time-varying info in dimensions. The dimension data is time-stamped with valid time (VT) to maintain a complete data history in temporal data warehouses (TDWs). Thus, TDWs manage evolvement of schema over a period of time by using versioning of schemas as well as evolution of data described under various versions of schema. But schema versioning in TDWs has not been covered in full detail. Mainly, the approaches to handle schema versions using valid time were proposed so far. This paper proposes an approach for bitemporal versions of schema in temporal DW model that allows for retroactive and proactive schema modifications and in addition also helps in tracking them.

[1]  Yvan Bédard,et al.  A multidimensional and multiversion structure for OLAP applications , 2002, DOLAP '02.

[2]  Peter Chamoni,et al.  Temporal Structures in Data Warehousing , 1999, DaWaK.

[3]  Sunita Sarawagi,et al.  Modeling multidimensional databases , 1997, Proceedings 13th International Conference on Data Engineering.

[4]  Johann Eder,et al.  The COMET Metamodel for Temporal Data Warehouses , 2002, CAiSE.

[5]  Yvan Bédard,et al.  Handling evolutions in multidimensional structures , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[6]  Alberto O. Mendelzon,et al.  A Temporal Query Language for OLAP: Implementation and a Case Study , 2001, DBPL.

[7]  Fabio Grandi,et al.  On Schema Versioning in Temporal Databases , 1995, Temporal Databases.

[8]  Johann Eder,et al.  Evolution of Dimension Data in Temporal Data Warehouses , 2000 .

[9]  Carsten Sapia,et al.  On Schema Evolution in Multidimensional Databases , 1999, DaWaK.

[10]  Johann Eder,et al.  Changes of Dimension Data in Temporal Data Warehouses , 2001, DaWaK.

[11]  Robert Wrembel,et al.  Managing Multiple Real and Simulation Business Scenarios by Means of a Multiversion Data Warehouse , 2006, BIS.

[12]  Esteban Zimányi,et al.  A conceptual solution for representing time in data warehouse dimensions , 2006, APCCM.

[13]  Torben Bach Pedersen,et al.  Schema Evolution for Stars and Snowflakes , 2004, ICEIS.

[14]  Gottfried Vossen,et al.  Schema Versioning in Data Warehouses , 2004, ER.

[15]  Johann Eder,et al.  A Model for a Temporal Data Warehouse , 2001 .

[16]  Alberto O. Mendelzon,et al.  Maintaining data cubes under dimension updates , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[17]  Gottfried Vossen,et al.  Consistency in data warehouse dimensions , 2002, Proceedings International Database Engineering and Applications Symposium.

[18]  Alberto O. Mendelzon,et al.  Updating OLAP dimensions , 1999, DOLAP '99.

[19]  Johann Eder,et al.  Creation and management of versions in multiversion data warehouse , 2004, SAC '04.

[20]  Alberto O. Mendelzon,et al.  Temporal Queries in OLAP , 2000, VLDB.

[21]  Wolfgang Lehner,et al.  Efficiently synchronizing multidimensional schema data , 2001, DOLAP '01.

[22]  Christine Collet,et al.  The WHES approach to data warehouse evolution , 2004 .

[23]  Michael D. Soo,et al.  Bibliography on temporal databases , 1991, SGMD.