Hierarchy of Discrete-Time Dynamical Systems, a Survey

This paper is an attempt to unify classical automata theory and dynamical systems theory. We present a notion of generalized dynamical systems, allowing us to compare properties of both types of systems. Then we establish a hierarchy of dynamical systems, including Turing machines, cellular automata and classical dynamical systems. We nish with some conclusions and motivations for future work.

[1]  Kenichi Morita,et al.  Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata , 1992, Inf. Process. Lett..

[2]  Max H. Garzon,et al.  Cellular automata and discrete neural networks , 1990 .

[3]  P. Flocchini,et al.  Searching for Chaos in Cellular Automata: New Tools for Classification , 1994 .

[4]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[5]  Karl Svozil,et al.  Randomness and undecidability in physics , 1993 .

[6]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[7]  Michel Sintzoff,et al.  Analysis of Dynamical Systems Using Predicate Transformers - Attraction and Composition , 1993, Analysis of Dynamical and Cognitive Systems.

[8]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[9]  Compositional Analysis of Dynamical Systems Using Predicate Transformers , 1993 .

[10]  Eugene Asarin,et al.  On some Relations between Dynamical Systems and Transition Systems , 1994, ICALP.

[11]  Lyman P. Hurd Formal Language Characterization of Cellular Automaton Limit Sets , 1987, Complex Syst..

[12]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[13]  Christopher Moore Smooth Maps of the Interval and the Real Line Capable of Universal Computation , 1993 .

[14]  G. Troll Formal Languages in Dynamical Systems , 1993 .

[15]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[16]  S. Franklin,et al.  Neural computability. II , 1989, International 1989 Joint Conference on Neural Networks.

[17]  Ethan Akin,et al.  The general topology of dynamical systems , 1993 .

[18]  K. Culík,et al.  Computation theoretic aspects of cellular automata , 1990 .

[19]  K. Culík,et al.  Formal languages and global cellular automaton behavior , 1991 .

[20]  Pascal Koiran Puissance de calcul des réseaux de neurones artificiels , 1993 .

[21]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .

[22]  Petr Kurka,et al.  On Topological Dynamics of Turing Machines , 1997, Theor. Comput. Sci..

[23]  Petr Kurka,et al.  Regular Unimodal Systems and Factors of Finite Automata , 1993, Theor. Comput. Sci..

[24]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[25]  Petr Kurka One dimensional dynamics and factors of finite automata , 1993 .

[26]  Huimin Xie On formal languages in one-dimensional dynamical systems , 1993 .

[27]  Alvy Ray Smith,et al.  Simple Computation-Universal Cellular Spaces , 1971, JACM.

[28]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[29]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[30]  M. Garzon,et al.  Real Computation with Cellular Automata , 1993 .

[31]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[32]  Michel Cosnard,et al.  Computability Properties of Low-dimensional Dynamical Systems , 1993, STACS.

[33]  D. Richardson,et al.  Tessellations with Local Transformations , 1972, J. Comput. Syst. Sci..

[34]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .