Magic state distillation with low space overhead and optimal asymptotic input count

We present an infinite family of protocols to distill magic states for T -gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the T -gate depth of the circuit scale linearly in the logarithm of the target error δ (up to log log 1/δ). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the “inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the “outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.

[1]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[2]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[3]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[4]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[5]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .

[6]  D. Spielman,et al.  Expander codes , 1996 .

[7]  Andrew W. Cross,et al.  Doubled Color Codes , 2015, 1509.03239.

[8]  Earl T. Campbell,et al.  An efficient magic state approach to small angle rotations , 2016, 1603.04230.

[9]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  H. Bombin,et al.  Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.

[11]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[12]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[13]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[14]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Isaac L. Chuang,et al.  Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes , 2016, 1603.03948.

[16]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[17]  Jim Harrington,et al.  Gauge color codes in two dimensions , 2015, 1512.04193.

[18]  Barbara M. Terhal,et al.  Majorana fermion codes , 2010, 1004.3791.

[19]  John Preskill,et al.  Lecture notes on quantum information and quantum computation~ http://www , 1998 .

[20]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[21]  Liang Fu,et al.  Quantum Error Correction for Complex and Majorana Fermion Qubits , 2017, 1703.00459.

[22]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[23]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[24]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[25]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[26]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[27]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[29]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[30]  N. J. A. Sloane,et al.  The Invariants of the Cli ord , 1999 .

[31]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[32]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[33]  Zoltán Füredi,et al.  Graphs of Prescribed Girth and Bi-Degree , 1995, J. Comb. Theory, Ser. B.

[34]  Stephen D. Bartlett,et al.  Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.

[35]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[36]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[37]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[38]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[39]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[40]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[41]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[42]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[43]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[44]  Matthew B. Hastings Small Majorana fermion codes , 2017, Quantum Inf. Comput..

[45]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[46]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[47]  Andrew J. Landahl,et al.  Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic , 2013, 1302.3240.

[48]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.