A Constructive Logic with Classical Proofs and Refutations

We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions proceed by contradiction. The system, in natural deduction style, is shown to be sound and complete with respect to a Kripke semantics. We develop the system from the perspective of the propositions-as-types correspondence by deriving a term assignment system with confluent reduction. The proof of strong normalization relies on a translation to System F with Mendler-style recursion.

[1]  Delia Kesner,et al.  Non-idempotent types for classical calculi in natural deduction style , 2018, Log. Methods Comput. Sci..

[2]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[3]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[4]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[5]  Philippe de Groote,et al.  An environment machine for the lambda-mu-calculus , 1998, Math. Struct. Comput. Sci..

[6]  A. W. Hofmann The Theory of Types , 1964 .

[7]  David Nelson,et al.  Constructible falsity , 1949, Journal of Symbolic Logic.

[8]  Étienne Miquey A Classical Sequent Calculus with Dependent Types , 2017, ESOP.

[9]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[10]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[11]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[12]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[13]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[14]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[15]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[16]  Alexis Saurin,et al.  On the Relations between the Syntactic Theories of lambda-mu-Calculi , 2008, CSL.

[17]  Alexis Saurin,et al.  Classical By-Need , 2016, ESOP.

[18]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[19]  A. Saurin Separation with streams in the /spl Lambda//spl mu/-calculus , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[20]  P. Aczel,et al.  Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .

[21]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[22]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[23]  Delia Kesner,et al.  Strong Bisimulation for Control Operators , 2019, ArXiv.

[24]  J. Krivine Realizability in classical logic , 2009 .

[25]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[26]  René David,et al.  λμ-calculus and Böhm's theorem , 2001, Journal of Symbolic Logic.

[27]  Hugo Herbelin A Constructive Proof of Dependent Choice, Compatible with Classical Logic , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[28]  Olivier Laurent Polarized Proof-Nets and Lambda µ-Calculus , 1999 .

[29]  Jean-Louis Krivine,et al.  Dependent choice, 'quote' and the clock , 2003, Theor. Comput. Sci..

[30]  Delia Kesner,et al.  Strong Bisimulation for Control Operators (Invited Talk) , 2020, CSL.

[31]  N. P. Mendler,et al.  Inductive Types and Type Constraints in the Second-Order lambda Calculus , 1991, Ann. Pure Appl. Log..

[32]  Simon Boulier,et al.  The next 700 syntactical models of type theory , 2017, CPP.

[33]  Hugo Herbelin,et al.  Kripke models for classical logic , 2009, Ann. Pure Appl. Log..

[34]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..