A Constructive Logic with Classical Proofs and Refutations
暂无分享,去创建一个
[1] Delia Kesner,et al. Non-idempotent types for classical calculi in natural deduction style , 2018, Log. Methods Comput. Sci..
[2] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[3] Frank Pfenning,et al. A modal analysis of staged computation , 1996, POPL '96.
[4] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[5] Philippe de Groote,et al. An environment machine for the lambda-mu-calculus , 1998, Math. Struct. Comput. Sci..
[6] A. W. Hofmann. The Theory of Types , 1964 .
[7] David Nelson,et al. Constructible falsity , 1949, Journal of Symbolic Logic.
[8] Étienne Miquey. A Classical Sequent Calculus with Dependent Types , 2017, ESOP.
[9] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[10] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[11] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[12] de Ng Dick Bruijn,et al. The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .
[13] Tobias Nipkow,et al. Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[14] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[15] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[16] Alexis Saurin,et al. On the Relations between the Syntactic Theories of lambda-mu-Calculi , 2008, CSL.
[17] Alexis Saurin,et al. Classical By-Need , 2016, ESOP.
[18] Valeria de Paiva,et al. On an Intuitionistic Modal Logic , 2000, Stud Logica.
[19] A. Saurin. Separation with streams in the /spl Lambda//spl mu/-calculus , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[20] P. Aczel,et al. Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .
[21] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[22] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[23] Delia Kesner,et al. Strong Bisimulation for Control Operators , 2019, ArXiv.
[24] J. Krivine. Realizability in classical logic , 2009 .
[25] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[26] René David,et al. λμ-calculus and Böhm's theorem , 2001, Journal of Symbolic Logic.
[27] Hugo Herbelin. A Constructive Proof of Dependent Choice, Compatible with Classical Logic , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[28] Olivier Laurent. Polarized Proof-Nets and Lambda µ-Calculus , 1999 .
[29] Jean-Louis Krivine,et al. Dependent choice, 'quote' and the clock , 2003, Theor. Comput. Sci..
[30] Delia Kesner,et al. Strong Bisimulation for Control Operators (Invited Talk) , 2020, CSL.
[31] N. P. Mendler,et al. Inductive Types and Type Constraints in the Second-Order lambda Calculus , 1991, Ann. Pure Appl. Log..
[32] Simon Boulier,et al. The next 700 syntactical models of type theory , 2017, CPP.
[33] Hugo Herbelin,et al. Kripke models for classical logic , 2009, Ann. Pure Appl. Log..
[34] Jean-Yves Girard,et al. On the Unity of Logic , 1993, Ann. Pure Appl. Log..