Sensor management using an active sensing approach

An approach that is common in the machine learning literature, known as active sensing, is applied to provide a method for managing agile sensors in a dynamic environment. We adopt an active sensing approach to scheduling sensors for multiple target tracking applications that combines particle filtering, predictive density estimation, and relative entropy maximization. Specifically, the goal of the system is to learn the number and states of a group of moving targets occupying a surveillance region. At each time step, the system computes a sensing action to take, based on an entropy measure called the Renyi divergence. After the measurement is made, the system updates its probability density on the number and states of the targets. This procedure repeats at each time where a sensor is available for use. The algorithms developed here extend standard active sensing methodology to dynamically evolving objects and continuous state spaces of high dimension. It is shown using simulated measurements on real recorded target trajectories that this method of sensor management yields more than a ten fold gain in sensor efficiency when compared to periodic scanning.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  S. Musick,et al.  Chasing the elusive sensor manager , 1994, Proceedings of National Aerospace and Electronics Conference (NAECON'94).

[3]  Keith D. Kastella,et al.  Event-averaged maximum likelihood estimation and information-based sensor management , 1994, Defense, Security, and Sensing.

[4]  Keith Kastella Discrimination gain to optimize detection and classification , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[5]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[6]  David Casasent,et al.  Feature Space Trajectory Methods for Active Computer Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Dimitri P. Bertsekas,et al.  Rollout Algorithms for Stochastic Scheduling Problems , 1999, J. Heuristics.

[9]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[10]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[11]  D. Castañón Approximate dynamic programming for sensor management , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[12]  S. Mori,et al.  Tracking and classifying multiple targets without a priori identification , 1986 .

[13]  R. Malhotra Temporal considerations in sensor management , 1995, Proceedings of the IEEE 1995 National Aerospace and Electronics Conference. NAECON 1995.

[14]  Alfred O. Hero,et al.  Tracking multiple targets using a particle filter representation of the joint multitarget probability density , 2004, SPIE Optics + Photonics.

[15]  A. Rényi On Measures of Entropy and Information , 1961 .

[16]  Eugene S. McVey,et al.  Multi-process constrained estimation , 1991, IEEE Trans. Syst. Man Cybern..

[17]  R. E. Bethel,et al.  A PDF multisensor multitarget tracker , 1998 .

[18]  Leonidas J. Guibas,et al.  A dual-space approach to tracking and sensor management in wireless sensor networks , 2002, WSNA '02.

[19]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[20]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[21]  Vikram Krishnamurthy,et al.  Algorithms for optimal scheduling and management of hidden Markov model sensors , 2002, IEEE Trans. Signal Process..

[22]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[23]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[24]  K. Kastella Joint multitarget probabilities for detection and tracking , 1997 .

[25]  David A. Castañón Optimal search strategies in dynamic hypothesis testing , 1995, IEEE Trans. Syst. Man Cybern..

[26]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[27]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Kenneth J. Hintz,et al.  A measure of the information gain attributable to cueing , 1991, IEEE Trans. Syst. Man Cybern..

[29]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[30]  Y. Bar-Shalom,et al.  Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Hai Tao,et al.  A Sampling Algorithm for Tracking Multiple Objects , 1999, Workshop on Vision Algorithms.

[32]  A. Farina,et al.  Cramér–Rao lower bound for tracking multiple targets , 2004 .

[33]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[34]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[35]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[36]  Keith D. Kastella Maximum likelihood estimator for report-to-track association , 1993, Defense, Security, and Sensing.

[37]  H. M. Shertukde,et al.  Tracking of crossing targets with imaging sensors , 1991 .

[38]  E. Kamen,et al.  Multiple Target Tracking based on Symmetric Measurement Equations , 1989, 1989 American Control Conference.

[39]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[40]  Robin J. Evans,et al.  Hidden Markov model multiarm bandits: a methodology for beam scheduling in multitarget tracking , 2001, IEEE Trans. Signal Process..

[41]  J. D. Gorman,et al.  Alpha-Divergence for Classification, Indexing and Retrieval (Revised 2) , 2002 .

[42]  Michael I. Miller,et al.  Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition , 1995, IEEE Trans. Signal Process..

[43]  Jeffrey Knopf,et al.  NAVAL POSTGRADUATE SCHOOL , 2000 .

[44]  Keith D. Kastella,et al.  Practical implementation of joint multitarget probabilities , 1998, Defense, Security, and Sensing.

[45]  K. Kastella,et al.  Event-averaged maximum likelihood estimation and mean-field theory in multitarget tracking , 1995, IEEE Trans. Autom. Control..

[46]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .