Anisotropic mesh adaptation through hierarchical error estimators

A posteriori error estimation and its use in mesh adaptation procedures has become one of the principal axes of development in the numerical analysis of partial differential equations. This paper would like to give a new insight on an anisotropic mesh adaptation technique which is based on a hierarchical error estimate. A simplified version will use information from a higher order reinterpolations of the solution. Even if they lack a complete mathematical justification, experimental evidence clearly shows that these methods work very well and that they provide a way to drive anisotropic mesh adaptation. Such anisotropic capabilities have led to spectacular results in the simulation of compressible flows with shocks([13], [11]). We present here a short description of the methodology and its underlying principles.

[1]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[2]  Michel Fortin,et al.  Certifiable Computational Fluid Dynamics Through Mesh Optimization , 1998 .

[3]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[4]  Ivan Hlaváček,et al.  How to recover the gradient of linear elements on nonuniform triangulations , 1996 .

[5]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[6]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[7]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[8]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[9]  Randolph E. Bank,et al.  A simple analysis of some a posteriori error estimates , 1998 .

[10]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[11]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[12]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[13]  M. Fortin,et al.  Anisotropic mesh adaptation : Theory, validation and applications , 1996 .

[14]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[15]  R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .

[16]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .