IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP

The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from 14C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.

[1]  G. W. Lamplugh,et al.  The Geological Society of London , 1961, Nature.

[2]  W. F. Libby,et al.  Age Determination by Radiocarbon Content: World-Wide Assay of Natural Radiocarbon. , 1949, Science.

[3]  Hans E. Suess,et al.  Secular variations of the cosmic-ray-produced Carbon 14 in the atmosphere and their interpretations , 1965 .

[4]  M. Stuiver,et al.  On the relationship between radiocarbon dates and true sample ages. , 1966 .

[5]  M. Baxter,et al.  Calibration of the Radiocarbon Time Scale , 1968, Nature.

[6]  Karl K. Turekian,et al.  The Late Cenozoic glacial ages , 1971 .

[7]  H. Oeschger,et al.  A box diffusion model to study the carbon dioxide exchange in nature , 1975 .

[8]  M. Stuiver,et al.  Discussion: Reporting of 14 C Data , 1977 .

[9]  A high-precision calibration of the AD radiocarbon time scale. , 1982 .

[10]  P. Damon,et al.  Calibration of radiocarbon dates: tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale , 1982, Radiocarbon.

[11]  Michael Baillie,et al.  High-Precision 14C Measurement of Irish Oaks to Show the Natural 14C Variations from 200 BC to 4000 BC , 1983, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[12]  M. Stuiver,et al.  Radiocarbon Age Calibration of Marine Samples Back to 9000 Cal Yr BP , 1986, Radiocarbon.

[13]  High-precision decadal calibration of the radiocarbon time scale, AD 1950-2500 BC. , 1986 .

[14]  D. J. Strom The Bayesian approach to estimation. , 1986, Health physics.

[15]  H. Minas,et al.  Conditions hydrologiques et chimiques associées à l'upwelling côtier du Portugal en fin d'été , 1986 .

[16]  W. Mook,et al.  High-Precision Calibration of the Radiocarbon Time Scale, 3930–3230 Cal BC , 1986, Radiocarbon.

[17]  M. Baillie,et al.  High-precision (super 14C measurement of Irish oaks to show the natural 14C variations from AD 1840-5210 BC. , 1986 .

[18]  M. Stuiver,et al.  High-Precision Calibration of the Radiocarbon Time Scale, AD 1950–500 BC , 1986, Radiocarbon.

[19]  E. Bard Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications , 1988 .

[20]  A. D. de Jong,et al.  Corrected Calibration of the Radiocarbon Time Scale, 3904–3203 Cal BC , 1989, Radiocarbon.

[21]  E. Druffel Decade time scale variability of ventilation in the North Atlantic: High‐precision measurements of bomb radiocarbon in banded corals , 1989 .

[22]  E. Bard,et al.  Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals , 1990, Nature.

[23]  C. Laj,et al.  Geomagnetic field control of 14C production over the last 80 Ky: Implications for the radiocarbon time-scale , 1991 .

[24]  German oak and pine (super 14) C calibration, 7200-9439 BC. , 1993 .

[25]  J. Beck,et al.  A Large Drop in Atmospheric 14C/12C and Reduced Melting in the Younger Dryas, Documented with 230Th Ages of Corals , 1993, Science.

[26]  M. Stuiver,et al.  Modeling Atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC , 1993, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[27]  J. van der Plicht,et al.  Calibration Curve for Short-Lived Samples, 1900–3900 BC , 1993, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[28]  J. Jouzel,et al.  Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores , 1993, Nature.

[29]  M. Stuiver,et al.  High-Precision Decadal Calibration of the Radiocarbon Time Scale, AD 1950–6000 BC , 1993, Radiocarbon.

[30]  M. Stuiver,et al.  Sun, ocean, climate and atmospheric 14CO2 : an evaluation of causal and spectral relationships , 1993 .

[31]  G. Pearson,et al.  High-precison (super 14) C measurement of German and Irish oaks to show the natural (super 14) C variations from 7890 to 5000 BC. , 1993 .

[32]  M. Stuiver,et al.  High-Precision Bidecadal Calibration of the Radiocarbon Time Scale, AD 1950–500 BC and 2500–6000 BC , 1993, Radiocarbon.

[33]  M. Stuiver,et al.  High-Precision Bidecadal Calibration of the Radiocarbon Time Scale, 500–2500 BC , 1993, Radiocarbon.

[34]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[35]  J. Duplessy,et al.  The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event , 1994 .

[36]  J. van der Plicht,et al.  The “Amsterdam Castle”: A Case Study of Wiggle Matching and the Proper Calibration Curve , 1995, Radiocarbon.

[37]  G. Bond,et al.  Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation , 1995, Science.

[38]  J. Overpeck,et al.  Rapid climate changes in the tropical Atlantic region during the last deglaciation , 1996, Nature.

[39]  J. van der Plicht,et al.  A 40,000-Year Varve Chronology from Lake Suigetsu, Japan: Extension of the 14C Calibration Curve , 1997, Radiocarbon.

[40]  Extension of the (super 14) C calibration curve to ca. 40,000 cal BC by synchronizing Greenland (super 18) O/ (super 16) O ice core records and North Atlantic Foraminifera profiles; a comparison with U/ Th coral data. , 1997 .

[41]  W. Broecker,et al.  Temporal variation in the interhemispheric 14C offset , 1998 .

[42]  P. Reimer,et al.  High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples , 1998, Radiocarbon.

[43]  J. Beck,et al.  A High-Resolution Radiocarbon Calibration Between 11,700 and 12,400 Calendar Years Bp Derived from 230Th Ages of Corals from Espiritu Santo Island, Vanuatu , 1998, Radiocarbon.

[44]  Kitagawa,et al.  Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production , 1998, Science.

[45]  E. Bard,et al.  Radiocarbon Calibration by Means of Mass Spectrometric 230Th/234U and 14C Ages of Corals: An Updated Database Including Samples from Barbados, Mururoa and Tahiti , 1998, Radiocarbon.

[46]  Revision and tentative extension of the tree-ring based 14C calibration, 9200-11,855 cal BP , 1998 .

[47]  D. Genty,et al.  Bomb 14C time history recorded in two modern stalagmites — importance for soil organic matter dynamics and bomb 14C distribution over continents , 1998 .

[48]  A. Baker,et al.  Calculation of Past Dead Carbon Proportion and Variability by the Comparison of AMS 14C and Tims U/TH Ages on Two Holocene Stalagmites , 1999, Radiocarbon.

[49]  Martin Wahlen,et al.  Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica , 1999, Nature.

[50]  J. Overpeck,et al.  Synchronous radiocarbon and climate shifts during the last deglaciation. , 2000, Science.

[51]  D. Schrag,et al.  Southwest Subtropical Pacific Surface Water Radiocarbon in a High-Resolution Coral Record , 2000, Radiocarbon.

[52]  G. Possnert,et al.  AMS Radiocarbon Measurements from the Swedish Varved Clays , 2000, Radiocarbon.

[53]  E. Boyle,et al.  U-Th dating of deep-sea corals , 2000 .

[54]  J. van der Plicht,et al.  Atmospheric Radiocarbon Calibration Beyond 11,900 cal BP from Lake Suigetsu Laminated Sediments , 2000, Radiocarbon.

[55]  M. Sarnthein,et al.  Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity , 2000, Radiocarbon.

[56]  A. Kirkland,et al.  Hydrological impact of heinrich events in the subtropical northeast atlantic , 2000, Science.

[57]  F. Abrantes 200 000 yr diatom records from Atlantic upwelling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185 000 yr , 2000 .

[58]  B. Kromer,et al.  Regional 14CO2 Offsets in the Troposphere: Magnitude, Mechanisms, and Consequences , 2001, Science.

[59]  Edwards,et al.  Extremely Large Variations of Atmospheric 14C Concentration During the Last Glacial Period , 2001, Science.

[60]  R. L. Edwards,et al.  A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China , 2001, Science.

[61]  E. Bard,et al.  New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea , 2002 .

[62]  Peter U. Clark,et al.  The role of the thermohaline circulation in abrupt climate change , 2002, Nature.

[63]  E. Bard,et al.  High frequency palaeoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian Margin , 2002 .

[64]  M. Baillie,et al.  High-Precision Radiocarbon Measurements of Contemporaneous Tree-Ring Dated Wood from the British Isles and New Zealand: Ad 1850–950 , 2002, Radiocarbon.

[65]  C. Buck,et al.  Preliminary Report of the First Workshop of the Intcal04 Radiocarbon Calibration/Comparison Working Group , 2002, Radiocarbon.

[66]  P. Reimer,et al.  Changes in Atmospheric 14C Between 55 and 42 ky BP Recorded in a Stalagmite From Socotra Island, Indian Ocean , 2003 .

[67]  S. Björck,et al.  Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation , 2003 .

[68]  W. Austin,et al.  The age and chronostratigraphical significance of North Atlantic Ash zone II , 2004 .

[69]  I. Matthews,et al.  Climatic Control of Riverine and Seawater Uranium-Isotope Ratios , 2004, Science.

[70]  M. Baillie,et al.  Radiocarbon Calibration in the Anglo-Saxon Period: Ad 495–725 , 2004, Radiocarbon.

[71]  G. Henderson,et al.  U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas , 2004 .

[72]  Michael Friedrich,et al.  NotCal04—Comparison/Calibration 14C Records 26–50 Cal Kyr BP , 2004, Radiocarbon.

[73]  E. Bard,et al.  Paired 14C and 230Th/U Dating of Surface Corals from the Marquesas and Vanuatu (Sub-Equatorial Pacific) in the 3000 to 15,000 Cal Yr Interval , 2004, Radiocarbon.

[74]  Caitlin E. Buck,et al.  Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP , 2004, Radiocarbon.

[75]  J. Beck,et al.  Radiocarbon Calibration and Comparison to 50 Kyr BP with Paired 14C and 230Th Dating of Corals from Vanuatu and Papua New Guinea , 2004, Radiocarbon.

[76]  E. Bard,et al.  Present Status of Radiocarbon Calibration and Comparison Records Based on Polynesian Corals and Iberian Margin Sediments , 2004, Radiocarbon.

[77]  C. Laj,et al.  Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records , 2004 .

[78]  E. Bard,et al.  Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin , 2004, Quaternary Research.

[79]  C E Buck,et al.  Shcal04 Southern Hemisphere Calibration, 0–11.0 Cal Kyr BP , 2004, Radiocarbon.

[80]  G. Burr,et al.  Radiocarbon Results from a 13-Kyr BP Coral from the Huon Peninsula, Papua New Guinea , 2004, Radiocarbon.

[81]  C E Buck,et al.  Formal Statistical Models for Estimating Radiocarbon Calibration Curves , 2004, Radiocarbon.

[82]  N. Shackleton,et al.  Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C , 2004 .

[83]  J. Eiríksson,et al.  Marine reservoir age variability and water mass distribution in the Iceland Sea , 2004 .

[84]  J. McManus,et al.  Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes , 2004, Nature.

[85]  M. Carré,et al.  Radiocarbon Reservoir Age Variations in the South Peruvian Upwelling During the Holocene , 2004, Radiocarbon.

[86]  M. Friedrich,et al.  Late Glacial Environmental and Climatic Changes from Synchronized Terrestrial Archives of Central Europe: The Network PROSIMUL , 2004 .

[87]  C. Buck,et al.  Marine04 Marine Radiocarbon Age Calibration, 0–26 Cal Kyr Bp , 2004, Radiocarbon.

[88]  K. Hughen,et al.  Cariaco Basin Calibration Update: Revisions to Calendar and 14C Chronologies for Core Pl07-58Pc , 2004, Radiocarbon.

[89]  K. Hughen,et al.  Late Glacial 14C Ages from a Floating, 1382-Ring Pine Chronology , 2004, Radiocarbon.

[90]  J. Overpeck,et al.  14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years , 2004, Science.

[91]  Michael Friedrich,et al.  The 12,460-Year Hohenheim Oak and Pine Tree-Ring Chronology from Central Europe—A Unique Annual Record for Radiocarbon Calibration and Paleoenvironment Reconstructions , 2004, Radiocarbon.

[92]  E. Bard,et al.  A Better Radiocarbon Clock , 2004, Science.

[93]  T. H. Andel The ownership of time: approved 14C calibration or freedom of choice? , 2005 .

[94]  R. Fairbanks,et al.  230Th/234U/238U and 231Pa/235U ages from a single fossil coral fragment by multi-collector magnetic-sector inductively coupled plasma mass spectrometry , 2005 .

[95]  H. Synal,et al.  Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C , 2005 .

[96]  M. Prange,et al.  Radiocarbon simulations for the glacial ocean: The effects of wind stress, Southern Ocean sea ice and Heinrich events , 2005 .

[97]  T. Guilderson,et al.  Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230 Th/ 234 U/ 238 U and 14 C dates on pristine corals , 2005 .

[98]  H. H. Birks,et al.  Changes in North Atlantic Radiocarbon Reservoir Ages During the Allerød and Younger Dryas , 2006, Science.

[99]  Caitlin E. Buck,et al.  Developments in radiocarbon calibration for archaeology , 2006, Antiquity.

[100]  A. Hogg,et al.  The potential for extending Intcal04 using OIS-3 New Zealand sub-fossil Kauri , 2006 .

[101]  Paul Mellars,et al.  A new radiocarbon revolution and the dispersal of modern humans in Eurasia , 2006, Nature.

[102]  A. Soares,et al.  Coastal Upwelling and Radiocarbon—Evidence for Temporal Fluctuations in Ocean Reservoir Effect off Portugal During the Holocene , 2006, Radiocarbon.

[103]  Z. Jacobs,et al.  Archaeology: Progress and pitfalls in radiocarbon dating , 2006, Nature.

[104]  K. Hughen,et al.  Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin , 2006 .

[105]  M. Baillie,et al.  Extension of New Zealand kauri (Agathis australis) tree‐ring chronologies into Oxygen Isotope Stage (OIS) 3 , 2006 .

[106]  Y. Yokoyama,et al.  Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales , 2006 .

[107]  Archaeology: Progress and pitfalls in radiocarbon dating (Reply) , 2006, Nature.

[108]  N. Conard When Neanderthals and modern humans met , 2006 .

[109]  J. Southon,et al.  Holocene Marine Reservoir Time Series ΔR Values from Cedros Island, Baja California , 2007, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[110]  M. Baillie,et al.  Towards a Radiocarbon Calibration for Oxygen Isotope Stage 3 Using New Zealand Kauri (Agathis Australis) , 2007, Radiocarbon.

[111]  Andreas Schmittner,et al.  Ocean circulation : mechanisms and impacts : past and future changes of meridional overturning , 2007 .

[112]  K. Meissner Younger Dryas: A data to model comparison to constrain the strength of the overturning circulation , 2007 .

[113]  K. Hughena,et al.  Marine-derived 14 C calibration and activity record for the past 50 , 000 years updated from the Cariaco Basin , 2007 .

[114]  Dorthe Dahl-Jensen,et al.  A 60 000 year Greenland stratigraphic ice core chronology , 2007 .

[115]  F. McCormac,et al.  Extended Radiocarbon Calibration in the Anglo-Saxon Period, AD 395–485 and AD 735–805 , 2008, Radiocarbon.

[116]  J. Singarayer,et al.  An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas , 2008 .

[117]  M. Gagan,et al.  Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea , 2008 .

[118]  R. Halley,et al.  Low reservoir ages for the surface ocean from mid-Holocene Florida corals , 2008 .

[119]  T. L. Rasmussen,et al.  Identification of the Fugloyarbanki tephra in the NGRIP ice core: a key tie‐point for marine and ice‐core sequences during the last glacial period , 2008 .

[120]  T. Stocker,et al.  Modeling the effect of abrupt ocean circulation change on marine reservoir age , 2008 .

[121]  C. Buck,et al.  Estimating radiocarbon calibration curves , 2008 .

[122]  D. Richards Quaternary Geochronology (3) , 2008 .

[123]  Jörg Franke,et al.  Modeling variations of marine reservoir ages during the last 45 000 years , 2008 .

[124]  O. Jöris,et al.  A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. , 2008, Journal of human evolution.

[125]  L. Skinner Interactive comment on "Revisiting the absolute calibration of the Greenland ice-core age-scales" , 2008 .

[126]  D. Frank,et al.  Environmental change during the Allerød and Younger Dryas reconstructed from Swiss tree‐ring data , 2008 .

[127]  B. Kromer,et al.  Tree rings and ice cores reveal C-14 calibration uncertainties during the Younger Dryas , 2008 .

[128]  B. Kromer,et al.  Lateglacial environmental variability from Swiss tree rings , 2008 .

[129]  A. Millard Comment on article by Blackwell and Buck , 2008 .

[130]  U. Zoppi,et al.  Atmospheric 14C variations derived from tree rings during the early Younger Dryas , 2009 .

[131]  David A. Mucciarone,et al.  Extreme longevity in proteinaceous deep-sea corals , 2009, Proceedings of the National Academy of Sciences.

[132]  C. Buck,et al.  IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP , 2009, Radiocarbon.

[133]  C. Laj,et al.  40Ar/39Ar, K–Ar and 230Th–238U dating of the Laschamp excursion: A radioisotopic tie-point for ice core and climate chronologies , 2009 .

[134]  P. Reimer,et al.  Investigating the Interhemispheric 14C Offset in the 1st Millennium AD and Assessment of Laboratory Bias and Calibration Errors , 2009, Radiocarbon.

[135]  M. Stambaugh,et al.  Progress in Constructing a Long Oak Chronology from the Central United States , 2009 .

[136]  P. Ascough,et al.  North Atlantic marine 14C reservoir effects: Implications for late-Holocene chronological studies , 2009 .

[137]  C. Buck,et al.  A Bayesian Approach to the Estimation of Radiocarbon Calibration Curves: The IntCal09 Methodology , 2009, Radiocarbon.

[138]  J. Beck,et al.  Modern and Pleistocene Reservoir Ages Inferred from South Pacific Corals , 2009, Radiocarbon.

[139]  E. Bedel Relationship between , 2009 .

[140]  A. Voelker,et al.  Temperature and productivity changes off the western Iberian margin during the last 150 ky , 2010 .

[141]  J. Singarayer,et al.  Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas , 2010 .

[142]  J. Andrés Christen,et al.  Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non‐tuned chronologies , 2010 .

[143]  B. Kromer,et al.  14C Calibration in the 2nd and 1st Millennia BC—Eastern Mediterranean Radiocarbon Comparison Project (EMRCP) , 2010, Radiocarbon.

[144]  C. Ramsey,et al.  A re-analysis of the Lake Suigetsu terrestrial radiocarbon calibration dataset , 2010 .

[145]  P. Abbott,et al.  Comment: Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non‐tuned chronologies. M. Blaauw, B. Wohlfarth, J. A. Christen, L. Ampel, D. Veres, K. Hughen, F. Preusser and A. Svensson (2009) , 2010 .

[146]  North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations , 2011 .

[147]  C. Ramsey,et al.  A novel approach to varve counting using μXRF and X-radiography in combination with thin-section microscopy, applied to the Late Glacial chronology from Lake Suigetsu, Japan , 2012 .

[148]  M. Prange,et al.  Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling , 2012 .

[149]  T. Haraguchi,et al.  A Complete Terrestrial Radiocarbon Record for 11.2 to 52.8 kyr B.P. , 2012, Science.

[150]  J. Southon,et al.  A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82 , 2012 .

[151]  Achim Brauer,et al.  SG06, a fully continuous and varved sediment core from Lake Suigetsu, Japan: stratigraphy and potential for improving the radiocarbon calibration model and understanding of late Quaternary climate changes , 2012 .

[152]  C. Ramsey,et al.  An automated method for varve interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan , 2012 .

[153]  W. Austin,et al.  Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies , 2012 .

[154]  J. van der Plicht,et al.  Dating of Late Pleistocene Tree-Ring Series from Japan , 2012, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[155]  Toshio Nakamura,et al.  A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan , 2012, Nature.

[156]  C. Buck,et al.  Selection and Treatment of Data for Radiocarbon Calibration: An Update to the International Calibration (IntCal) Criteria , 2013, Radiocarbon.

[157]  Michael Sarnthein,et al.  Peak glacial 14 C ventilation ages suggest major draw-down of carbon into the abyssal ocean , 2013 .

[158]  C. Buck,et al.  The Bayesian Approach to Radiocarbon Calibration Curve Estimation: The IntCal13, Marine13, and SHCal13 Methodologies , 2013, Radiocarbon.

[159]  J. Southon,et al.  Reviewing the Mid-First Millennium BC 14C “warp” using 14C/bristlecone pine data , 2013 .

[160]  C. Ramsey,et al.  The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13 , 2013, Radiocarbon.

[161]  C. Ramsey,et al.  Calibration for Archaeological and Environmental Terrestrial Samples in the Time Range 26–50 ka cal BP , 2013, Radiocarbon.

[162]  M. Sarnthein,et al.  14C reservoir ages show deglacial changes in ocean currents and carbon cycle , 2013 .

[163]  E. Bard,et al.  Radiocarbon Calibration/Comparison Records Based on Marine Sediments from the Pakistan and Iberian Margins , 2009, Radiocarbon.

[164]  Fortunat Joos,et al.  A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14 C and CO 2 records: implications of data and model uncertainties , 2013 .

[165]  Q. Hua,et al.  SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP , 2013, Radiocarbon.

[166]  C. Ramsey,et al.  Integration of the Old and New Lake Suigetsu (Japan) Terrestrial Radiocarbon Calibration Data Sets , 2013, Radiocarbon.

[167]  E. Bard,et al.  Elastic Tie-Pointing—Transferring Chronologies between Records via a Gaussian Process , 2013, Radiocarbon.

[168]  P. Deschamps,et al.  Comparison of 14C and U-Th Ages in Corals from IODP #310 Cores Offshore Tahiti , 2013, Radiocarbon.

[169]  S. K. Solanki,et al.  The AD775 cosmic event revisited: the Sun is to blame , 2013, 1302.6897.

[170]  T. L. Rasmussen,et al.  North Atlantic marine radiocarbon reservoir ages through Heinrich event H4: a new method for marine age model construction , 2014 .