Brain age prediction using deep learning uncovers associated sequence variants

[1]  Ryan D. Hernandez,et al.  Recovery of trait heritability from whole genome sequence data , 2019, bioRxiv.

[2]  Karolinska Schizophrenia,et al.  Common brain disorders are associated with heritable patterns of apparent aging of the brain , 2019 .

[3]  Knut K. Kolskår,et al.  Common brain disorders are associated with heritable patterns of apparent aging of the brain , 2019, Nature Neuroscience.

[4]  Hyunwoo Lee,et al.  Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements , 2019, NeuroImage.

[5]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[6]  J. Marchini,et al.  Genome-wide association studies of brain imaging phenotypes in UK Biobank , 2018, Nature.

[7]  D. Rivière,et al.  eQTL of KCNK2 regionally influences the brain sulcal widening: evidence from 15,597 UK Biobank participants with neuroimaging data , 2018, bioRxiv.

[8]  Jonathan P. Beauchamp,et al.  Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals , 2018, Nature Genetics.

[9]  S. Linnarsson,et al.  Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways , 2018, Nature Genetics.

[10]  Erlend S. Dørum,et al.  Genetics of brain age suggest an overlap with common brain disorders , 2018, bioRxiv.

[11]  Xiaoliang Wang,et al.  Lig4-4 selectively inhibits TREK-1 and plays potent neuroprotective roles in vitro and in rat MCAO model , 2018, Neuroscience Letters.

[12]  Thomas E. Nichols,et al.  Statistical Challenges in “Big Data” Human Neuroimaging , 2018, Neuron.

[13]  Hao Li,et al.  Visualizing the Loss Landscape of Neural Nets , 2017, NeurIPS.

[14]  Stuart J. Ritchie,et al.  Brain age predicts mortality , 2017, Molecular Psychiatry.

[15]  Nick C Fox,et al.  Analysis of shared heritability in common disorders of the brain , 2018, Science.

[16]  P. Kraft,et al.  GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk , 2017, Nature Communications.

[17]  Yanhui Cai,et al.  TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice , 2017, Neurobiology of Learning and Memory.

[18]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[19]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[20]  K. Rawlik,et al.  An atlas of genetic associations in UK Biobank , 2017, bioRxiv.

[21]  Kazunori Sato,et al.  Age estimation from brain MRI images using deep learning , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[22]  Archie Campbell,et al.  Exploration of haplotype research consortium imputation for genome-wide association studies in 20,032 Generation Scotland participants , 2017, Genome Medicine.

[23]  Sergey Ioffe,et al.  Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models , 2017, NIPS.

[24]  Salvatore Nigro,et al.  Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality , 2017, Social cognitive and affective neuroscience.

[25]  H. Stefánsson,et al.  Selection against variants in the genome associated with educational attainment , 2017, Proceedings of the National Academy of Sciences.

[26]  Giovanni Montana,et al.  Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker , 2016, NeuroImage.

[27]  Daniel S. Margulies,et al.  Predicting brain-age from multimodal imaging data captures cognitive impairment , 2016, NeuroImage.

[28]  Ayellet V. Segrè,et al.  Colocalization of GWAS and eQTL Signals Detects Target Genes , 2016, bioRxiv.

[29]  Eileen Luders,et al.  Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners , 2016, NeuroImage.

[30]  Y. Stern,et al.  Differences between chronological and brain age are related to education and self-reported physical activity , 2016, Neurobiology of Aging.

[31]  Wiepke Cahn,et al.  Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. , 2016, The American journal of psychiatry.

[32]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[34]  Kazunori Sato,et al.  An age estimation method using brain local features for T1-weighted images , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[35]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[36]  Robert Leech,et al.  Prediction of brain age suggests accelerated atrophy after traumatic brain injury , 2015, Annals of neurology.

[37]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[38]  M. Dylan Tisdall,et al.  Head motion during MRI acquisition reduces gray matter volume and thickness estimates , 2015, NeuroImage.

[39]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[40]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[41]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[42]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[43]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[44]  Christos Davatzikos,et al.  Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. , 2014, Schizophrenia bulletin.

[45]  D. Turnbull,et al.  Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?☆ , 2014, Ageing Research Reviews.

[46]  S. Meuth,et al.  TREK-King the Blood–Brain-Barrier , 2014, Journal of Neuroimmune Pharmacology.

[47]  S. Baron-Cohen,et al.  Neuroscience and Biobehavioral Reviews a Meta-analysis of Sex Differences in Human Brain Structure , 2022 .

[48]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[49]  Huiguang He,et al.  Age estimation using cortical surface pattern combining thickness with curvatures , 2014, Medical & Biological Engineering & Computing.

[50]  Christian Gaser,et al.  Advanced BrainAGE in older adults with type 2 diabetes mellitus , 2013, Front. Aging Neurosci..

[51]  Stefan Klöppel,et al.  BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease , 2013, PloS one.

[52]  Eileen Luders,et al.  Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI , 2012, NeuroImage.

[53]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[54]  Wiro J Niessen,et al.  Common variants at 6q22 and 17q21 are associated with intracranial volume , 2012, Nature Genetics.

[55]  Alison Abbott,et al.  Dementia: A problem for our age , 2011, Nature.

[56]  T. Salthouse,et al.  What cognitive abilities are involved in trail-making performance? , 2011, Intelligence.

[57]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[58]  Alison Abbott,et al.  A problem for our age , 2011 .

[59]  Stefan Klöppel,et al.  Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters , 2010, NeuroImage.

[60]  R. Marioni,et al.  Age-associated cognitive decline. , 2009, British medical bulletin.

[61]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[62]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[63]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[64]  David A Seminowicz,et al.  Accelerated Brain Gray Matter Loss in Fibromyalgia Patients: Premature Aging of the Brain? , 2007, The Journal of Neuroscience.

[65]  R. Pfundt,et al.  A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism , 2006, Nature Genetics.

[66]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[67]  H. Stefánsson,et al.  A common inversion under selection in Europeans , 2005, Nature Genetics.

[68]  C. Broeckhoven,et al.  The role of tau (MAPT) in frontotemporal dementia and related tauopathies , 2004, Human mutation.

[69]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[70]  S. K. Zaidi,et al.  Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression , 2004, Oncogene.

[71]  P. Donnelly,et al.  The effects of human population structure on large genetic association studies , 2004, Nature Genetics.

[72]  G. Hervieu,et al.  Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS , 2001, Neuroscience.

[73]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[75]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[76]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[77]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[78]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[79]  Andreas Zell,et al.  Simulation neuronaler Netze , 1994 .

[80]  Anders Krogh,et al.  A Simple Weight Decay Can Improve Generalization , 1991, NIPS.

[81]  Hervé Bourlard,et al.  Generalization and Parameter Estimation in Feedforward Netws: Some Experiments , 1989, NIPS.