Central limit theorems, Lee-Yang zeros, and graph-counting polynomials

We consider the asymptotic normalcy of families of random variables $X$ which count the number of occupied sites in some large set. We write $Prob(X=m)=p_mz_0^m/P(z_0)$, where $P(z)$ is the generating function $P(z)=\sum_{j=0}^{N}p_jz^j$ and $z_0>0$. We give sufficient criteria, involving the location of the zeros of $P(z)$, for these families to satisfy a central limit theorem (CLT) and even a local CLT (LCLT); the theorems hold in the sense of estimates valid for large $N$ (we assume that $Var(X)$ is large when $N$ is). For example, if all the zeros lie in the closed left half plane then $X$ is asymptotically normal, and when the zeros satisfy some additional conditions then $X$ satisfies an LCLT. We apply these results to cases in which $X$ counts the number of edges in the (random) set of "occupied" edges in a graph, with constraints on the number of occupied edges attached to a given vertex. Our results also apply to systems of interacting particles, with $X$ counting the number of particles in a box $\Lambda$ whose size approaches infinity; $P(z)$ is then the grand canonical partition function and its zeros are the Lee-Yang zeros.

[1]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[2]  David G. Wagner,et al.  Weighted enumeration of spanning subgraphs with degree constraints , 2008, J. Comb. Theory, Ser. B.

[3]  P. Brändén,et al.  THE LEE – YANG AND PÓLYA – SCHUR PROGRAMS , 2013 .

[4]  Philippe Flajolet,et al.  General combinatorial schemas: Gaussian limit distributions and exponential tails , 1993, Discret. Math..

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[6]  Julius Borcea,et al.  The Lee‐Yang and Pólya‐Schur programs. II. Theory of stable polynomials and applications , 2008, 0809.3087.

[7]  David Ruelle Zeros of Graph-Counting Polynomials , 1999 .

[8]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[9]  James W. Evans,et al.  Irreversible immobile random adsorption of dimers, trimers, ... on 2D lattices , 1985 .

[10]  R. Dobrushin,et al.  The central limit theorem and the problem of equivalence of ensembles , 1977 .

[11]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[12]  David Ruelle,et al.  Characterization of Lee-Yang polynomials , 2008, 0811.1327.

[13]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[14]  E. M. Opdam,et al.  The two-dimensional Ising model , 2018, From Quarks to Pions.

[15]  K. V. Menon On the convolution of logarithmically concave sequences , 1969 .

[16]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[17]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[18]  Taro Asano,et al.  Theorems on the Partition Functions of the Heisenberg Ferromagnets , 1970 .

[19]  D. Ruelle,et al.  Phase Transitions with Four-Spin Interactions , 2010, 1006.0959.

[20]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[21]  Jim Pitman,et al.  Probabilistic Bounds on the Coefficients of Polynomials with Only Real Zeros , 1997, J. Comb. Theory, Ser. A.

[22]  E. Rodney Canfield Application of the Berry-Esséen Inequality to Combinatorial Estimates , 1980, J. Comb. Theory, Ser. A.

[23]  P. Forrester,et al.  Local Central Limit Theorem for Determinantal Point Processes , 2013, 1311.7126.

[24]  David Ruelle Counting Unbranched Subgraphs , 1999 .

[25]  M. Aizenman,et al.  Geometric analysis of ϕ 4 fields and Ising models , 1982 .

[26]  D. Ruelle,et al.  Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems , 2012, 1204.0558.

[27]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[28]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[29]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[30]  Jeff Kahn,et al.  A Normal Law for Matchings , 2000, Comb..

[31]  J. Ginibre Rigorous lower bound on the compressibility of a classical system , 1967 .

[32]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[33]  R. Dobrushin,et al.  Large and Moderate Deviations in the Ising Model , 1994 .

[34]  David Ruelle,et al.  Extension of the Lee-Yang Circle Theorem , 1971 .

[35]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[36]  B. Souillard,et al.  Lee-Yang theory and normal fluctuations , 1979 .

[37]  Chris D. Godsil,et al.  Matching behaviour is asymptotically normal , 1981, Comb..

[38]  Michael Aizenman,et al.  Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .

[39]  J. Borcea,et al.  The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.

[40]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .