Convergence of Adaptive Sampling Schemes

In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions do not benefit from repeated updating.

[1]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[2]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[3]  C. Robert,et al.  Controlled MCMC for Optimal Sampling , 2001 .

[4]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[5]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[6]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[7]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[8]  C. Robert Intrinsic losses , 1996 .

[9]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[10]  Yukito Iba,et al.  Population-based Monte Carlo algorithms , 2000 .

[11]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[12]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[13]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[14]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[15]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[16]  R. Douc,et al.  Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2005, math/0507042.

[17]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[18]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[19]  Anatoly Zhigljavsky,et al.  Self-regenerative Markov chain Monte Carlo with adaptation , 2003 .

[20]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[21]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[22]  Adaptation for Self Regenerative , 1998 .

[23]  Jean-Michel Marin,et al.  Iterated importance sampling in missing data problems , 2006, Comput. Stat. Data Anal..

[24]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .