EpidVis: A visual web querying tool for animal epidemiology surveillance

The use of electronic media for the detection and monitoring of animal disease outbreaks is crucial for disease surveillance and early warning systems. Animal health specialists regularly query web pages using various formulations to obtain up-to-date news on disease outbreaks. This task, however, is often manual and time-consuming. Visualization techniques can nevertheless facilitate their web searches, compared to traditional searches. This article presents EpidVis, a visual web query tool designed for experts in animal health, conducting epidemic intelligence activities from news sources on the Internet. It consists of several views that help the domain experts efficiently build and launch queries, as well as visualize the results. Moreover, it supports external information integration to help domain experts enrich their knowledge and adapt their queries. EpidVis was assessed considering usability (user study) and usefulness for experts (case study). The results show that our tool helps domain experts in their daily surveillance tasks, allowing them to extract in timely manner accurate information on disease outbreaks from the web.

[1]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Anselm Spoerri,et al.  InfoCrystal: A visual tool for information retrieval , 1993, Proceedings Visualization '93.

[3]  Tiziana Catarci,et al.  Visual Query Systems for Databases: A Survey , 1997, J. Vis. Lang. Comput..

[4]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[5]  Yiyu Yao,et al.  VisiQ: Supporting visual and interactive query refinement , 2007, Web Intell. Agent Syst..

[6]  Christian Bachmaier A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  John T. Stasko,et al.  DataMeadow: A Visual Canvas for Analysis of Large-Scale Multivariate Data , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[8]  Son Doan,et al.  BioCaster: detecting public health rumors with a Web-based text mining system , 2008, Bioinform..

[9]  Polaris: a system for query, analysis, and visualization of multidimensional databases , 2008, Commun. ACM.

[10]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[11]  Kenneth D. Mandl,et al.  HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports , 2008, Journal of the American Medical Informatics Association.

[12]  Matthew O. Ward,et al.  Interactive Data Visualization - Foundations, Techniques, and Applications , 2010 .

[13]  Matthew O. Ward,et al.  Interactive data visualization , 2010 .

[14]  H. Rosling,et al.  Health advocacy with Gapminder animated statistics , 2011, Journal of epidemiology and global health.

[15]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[16]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[17]  Alessandro Vespignani,et al.  The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale , 2011, BMC infectious diseases.

[18]  Inanç Birol,et al.  Hive plots - rational approach to visualizing networks , 2012, Briefings Bioinform..

[19]  Shuigeng Zhou,et al.  VOGUE: Towards A Visual Interaction-aware Graph Query Processing Framework , 2013, CIDR.

[20]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[21]  Thomas Ertl,et al.  ScatterBlogs2: Real-Time Monitoring of Microblog Messages through User-Guided Filtering , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Aditya G. Parameswaran,et al.  SEEDB: Automatically Generating Query Visualizations , 2014, Proc. VLDB Endow..

[23]  G. Gray,et al.  Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals , 2014, PloS one.

[24]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[25]  Landon Fridman Detwiler,et al.  Visualization and analytics tools for infectious disease epidemiology: A systematic review , 2014, J. Biomed. Informatics.

[26]  Thomas Ertl,et al.  TreeQueST: A Treemap-Based Query Sandbox for Microdocument Retrieval , 2015, 2015 48th Hawaii International Conference on System Sciences.

[27]  Trevor Bedford,et al.  nextflu: real-time tracking of seasonal influenza virus evolution in humans , 2015, Bioinform..

[28]  Andreas Kerren,et al.  Text visualization techniques: Taxonomy, visual survey, and community insights , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[29]  Michael J. Muller,et al.  VoroGraph: Visualization Tools for Epidemic Analysis , 2015, CHI Extended Abstracts.

[30]  Maguelonne Teisseire,et al.  Biomedical term extraction: overview and a new methodology , 2015, Information Retrieval Journal.

[31]  A Mawudeku,et al.  Big Data and the Global Public Health Intelligence Network (GPHIN). , 2015, Canada communicable disease report = Releve des maladies transmissibles au Canada.

[32]  G. Woźniakowski,et al.  African Swine Fever Epidemic, Poland, 2014–2015 , 2016, Emerging infectious diseases.

[33]  Mathieu Roche,et al.  Identification of Associations between Clinical Signs and Hosts to Monitor the Web for Detection of Animal Disease Outbreaks , 2016, Int. J. Agric. Environ. Inf. Syst..

[34]  A. Sallaberry,et al.  Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1 , 2017 .

[35]  Tina Tremel,et al.  VESPa 2.0: Data-Driven Behavior Models for Visual Analytics of Movement Sequences , 2017, 2017 International Symposium on Big Data Visual Analytics (BDVA).

[36]  Alex Endert,et al.  Visual Graph Query Construction and Refinement , 2017, SIGMOD Conference.

[37]  Pascal Poncelet,et al.  Node Overlap Removal for 1D Graph Layout , 2017, 2017 21st International Conference Information Visualisation (IV).

[38]  Jianliang Xu,et al.  AutoG: a visual query autocompletion framework for graph databases , 2017, The VLDB Journal.

[39]  M. Roche,et al.  Web monitoring of emerging animal infectious diseases integrated in the French Animal Health Epidemic Intelligence System , 2018, PloS one.

[40]  Pascal Poncelet,et al.  EpidNews: An Epidemiological News Explorer for Monitoring Animal Diseases , 2018, VINCI.

[41]  Dave Carter,et al.  Revitalizing the Global Public Health Intelligence Network (GPHIN) , 2018, Online Journal of Public Health Informatics.

[42]  Dino Ienco,et al.  Visual querying of large multilayer graphs , 2018, SSDBM.