Approximate Two-Sphere One-Cylinder Inequality in Parabolic Periodic Homogenization
暂无分享,去创建一个
[1] S. Vessella,et al. Doubling properties of caloric functions , 2006, math/0611462.
[2] E. Malinnikova,et al. On Three Balls Theorem for Discrete Harmonic Functions , 2014 .
[3] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[4] S. Vessella. Carleman Estimates, Optimal Three Cylinder Inequality, and Unique Continuation Properties for Solutions to Parabolic Equations , 2003 .
[5] Luca Rondi,et al. The stability for the Cauchy problem for elliptic equations , 2009, 0907.2882.
[6] A. Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure , 2016, 1605.02587.
[7] F. Lin. A uniqueness theorem for parabolic equations , 1990 .
[8] O. Oleinik,et al. GENERALIZED ANALYTICITY AND SOME RELATED PROPERTIES OF SOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS , 1974 .
[9] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[10] F. J. Fernández. Unique Continuation for Parabolic Operators. II , 2003 .
[11] Fred J. Vermolen,et al. Numerical Methods in Scientific Computing , 2006 .
[12] L. Escauriaza,et al. Unique continuation for parabolic operators , 2003 .
[13] Herbert Koch,et al. Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients , 2007, 0704.1349.
[14] Sergio Vessella,et al. Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates , 2007, 0710.2192.
[15] Zhongwei Shen,et al. Asymptotic expansions of fundamental solutions in parabolic homogenization , 2017, Analysis & PDE.
[16] A. Varin. Three-cylinder theorem for a certain class of semilinear parabolic equations , 1992 .
[17] R. J. Glagoleva. SOME PROPERTIES OF THE SOLUTIONS OF A LINEAR SECOND ORDER PARABOLIC EQUATION , 1967 .
[18] Gen Nakamura,et al. Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients , 2009, 0901.4638.
[19] Carlos Kenig,et al. Propagation of Smallness in Elliptic Periodic Homogenization , 2019, SIAM J. Math. Anal..
[20] F. Lin. Nodal sets of solutions of elliptic and parabolic equations , 1991 .
[21] L. Escauriaza. Carleman inequalities and the heat operator , 2000 .
[22] L. Vega,et al. Carleman inequalities and the heat operator II , 2001 .