Approximate Two-Sphere One-Cylinder Inequality in Parabolic Periodic Homogenization

In this paper, for a family of second-order parabolic equation with rapidly oscillating and time-dependent periodic coefficients, we are interested in an approximate two-sphere one-cylinder inequality for these solutions in parabolic periodic homogenization, which implies an approximate quantitative propagation of smallness. The proof relies on the asymptotic behavior of fundamental solutions and the Lagrange interpolation technique.

[1]  S. Vessella,et al.  Doubling properties of caloric functions , 2006, math/0611462.

[2]  E. Malinnikova,et al.  On Three Balls Theorem for Discrete Harmonic Functions , 2014 .

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  S. Vessella Carleman Estimates, Optimal Three Cylinder Inequality, and Unique Continuation Properties for Solutions to Parabolic Equations , 2003 .

[5]  Luca Rondi,et al.  The stability for the Cauchy problem for elliptic equations , 2009, 0907.2882.

[6]  A. Logunov Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure , 2016, 1605.02587.

[7]  F. Lin A uniqueness theorem for parabolic equations , 1990 .

[8]  O. Oleinik,et al.  GENERALIZED ANALYTICITY AND SOME RELATED PROPERTIES OF SOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS , 1974 .

[9]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[10]  F. J. Fernández Unique Continuation for Parabolic Operators. II , 2003 .

[11]  Fred J. Vermolen,et al.  Numerical Methods in Scientific Computing , 2006 .

[12]  L. Escauriaza,et al.  Unique continuation for parabolic operators , 2003 .

[13]  Herbert Koch,et al.  Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients , 2007, 0704.1349.

[14]  Sergio Vessella,et al.  Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates , 2007, 0710.2192.

[15]  Zhongwei Shen,et al.  Asymptotic expansions of fundamental solutions in parabolic homogenization , 2017, Analysis & PDE.

[16]  A. Varin Three-cylinder theorem for a certain class of semilinear parabolic equations , 1992 .

[17]  R. J. Glagoleva SOME PROPERTIES OF THE SOLUTIONS OF A LINEAR SECOND ORDER PARABOLIC EQUATION , 1967 .

[18]  Gen Nakamura,et al.  Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients , 2009, 0901.4638.

[19]  Carlos Kenig,et al.  Propagation of Smallness in Elliptic Periodic Homogenization , 2019, SIAM J. Math. Anal..

[20]  F. Lin Nodal sets of solutions of elliptic and parabolic equations , 1991 .

[21]  L. Escauriaza Carleman inequalities and the heat operator , 2000 .

[22]  L. Vega,et al.  Carleman inequalities and the heat operator II , 2001 .