In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots.

PEGylated quantum dots (QDs) capped with d-mannose, d-galactose, and d-galactosamine have been synthesized. The stable, high quantum yield fluorescence of QDs was exploited to study specific carbohydrate-protein interactions in vitro and in vivo.

[1]  C. Gandhi,et al.  Transgenic Expression of Cyclooxygenase-2 in Hepatocytes Accelerates Endotoxin-Induced Acute Liver Failure1 , 2008, The Journal of Immunology.

[2]  Y. Li,et al.  Dynamic metabonomic analysis of BALB/C mice with different outcomes after D‐galactosamine/lipopolysaccharide–induced fulminant hepatic failure , 2008, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

[3]  Jackie Y Ying,et al.  Synthesis of carbohydrate-conjugated nanoparticles and quantum dots. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  O. Schwardt,et al.  Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. , 2008, Bioorganic & medicinal chemistry.

[5]  K Dane Wittrup,et al.  Monovalent, reduced-size quantum dots for imaging receptors on living cells , 2008, Nature Methods.

[6]  S. Kawakami,et al.  Mannosylated semiconductor quantum dots for the labeling of macrophages. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[7]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[8]  M. Bawendi,et al.  Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. , 2007, Journal of the American Chemical Society.

[9]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[10]  Kjetil H Elvevold,et al.  The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor , 2007, Hepatology.

[11]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[12]  Jungbae Kim,et al.  Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation. , 2006, Angewandte Chemie.

[13]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[14]  J. M. de la Fuente,et al.  Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. , 2006, Biochimica et biophysica acta.

[15]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[16]  Igor L. Medintz,et al.  Quantum dot-based multiplexed fluorescence resonance energy transfer. , 2005 .

[17]  D. Pang,et al.  CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. , 2005, Chemical communications.

[18]  M. Howarth,et al.  Targeting quantum dots to surface proteins in living cells with biotin ligase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Vladimir P Torchilin,et al.  Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo , 2005, Nature Medicine.

[20]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[21]  E. Chaikof,et al.  Site‐Specific Multivalent Carbohydrate Labeling of Quantum Dots and Magnetic Beads , 2004, Chembiochem : a European journal of chemical biology.

[22]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[23]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[24]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[25]  Zeev Rosenzweig,et al.  Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots , 2003 .

[26]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[27]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[28]  P. Hayes,et al.  Animal models of fulminant hepatic failure: A critical evaluation , 2000, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

[29]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[30]  T. Willnow,et al.  The Major Subunit of the Asialoglycoprotein Receptor Is Expressed on the Hepatocellular Surface in Mice Lacking the Minor Receptor Subunit* , 1996, The Journal of Biological Chemistry.

[31]  D. Fiete,et al.  Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes , 1980, Cell.

[32]  G. Ashwell,et al.  A hepatic receptor of avian origin capable of binding specifically modified glycoproteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Weibo Cai,et al.  Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging , 2008, Nature Protocols.

[34]  A. Surolia,et al.  Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. , 2007, Bioconjugate chemistry.

[35]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[36]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.