Investigation of Self-Heating Effects in Submicrometer GaN/AlGaN HEMTs Using an Electrothermal Monte Carlo Method

An electrothermal Monte Carlo (MC) method is applied in this paper to investigate electron transport in submicrometer wurtzite GaN/AlGaN high-electron mobility transistors (HEMTs) grown on various substrate materials including SiC, Si, GaN, and sapphire. The simulation method is an iterative technique that alternately runs an MC electronic simulation and solves the heat diffusion equation using an analytical thermal resistance matrix method. Results demonstrate how the extent of the thermal droop in the Id-Vds characteristics and the device peak temperature depend upon both the biasing conditions and the substrate material type. Polarization effects are considered in the simulations, as they greatly influence electron transport in GaN/AlGaN HEMTs by creating a highly concentrated two-dimensional electron gas (2DEG) at the GaN/AlGaN interface. It is shown that a higher 2DEG density provides the devices with a better current handling capability but also increases the importance of the thermal effects

[1]  Shela Aboud,et al.  Quantum Corrected Full-Band Cellular Monte Carlo Simulation of AlGaN/GaN HEMTs , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[2]  Jean-Yves Duboz,et al.  GaN as seen by the industry , 1999 .

[3]  Michael S. Shur,et al.  Transient electron transport in wurtzite GaN, InN, and AlN , 1999 .

[4]  Kevin F. Brennan,et al.  Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures , 2001 .

[5]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[6]  B. Ridley,et al.  The LO phonon lifetime in GaN , 1996 .

[7]  Giovanni Ghione,et al.  Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries , 2001 .

[8]  R. Kelsall,et al.  Simulation of Electron Transport in InGaAs/AlGaAs HEMTs Using an Electrothermal Monte Carlo Method , 2006, IEEE Transactions on Electron Devices.

[9]  I. Adesida,et al.  High-power microwave 0.25-μm gate doped-channel GaN/AlGaN heterostructure field effect transistor , 1998, IEEE Electron Device Letters.

[10]  J. Lin,et al.  The origins of leaky characteristics of Schottky diodes on p-GaN , 2003 .

[11]  Lester F. Eastman,et al.  Hot-phonon effect on power dissipation in a biasedAlxGa1−xN∕AlN∕GaNchannel , 2005 .

[12]  D. Ducatteau,et al.  Punch-through in short-channel AlGaN/GaN HFETs , 2006, IEEE Transactions on Electron Devices.

[13]  Mario G. Ancona,et al.  AlGaN/GaN heterostructure field-effect transistor model including thermal effects , 2000 .

[14]  Y. Chen,et al.  An Al/sub 0.3/Ga/sub 0.7/N/GaN undoped channel heterostructure field effect transistor with F/sub max/ of 107 GHz , 1999, IEEE Electron Device Letters.

[15]  H. Mehling,et al.  Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300-2300 K) , 1997 .

[16]  S. Keller,et al.  Influence of the dynamic access resistance in the g/sub m/ and f/sub T/ linearity of AlGaN/GaN HEMTs , 2005, IEEE Transactions on Electron Devices.

[17]  K. Brennan,et al.  Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model , 2003 .

[18]  L. Rota,et al.  Monte Carlo simulation of hot-phonon and degeneracy effects in the AlGaN/GaN two-dimensional electron gas channel , 2003 .

[19]  C. Moglestue,et al.  Ensemble Monte Carlo particle investigation of hot electron induced source‐drain burnout characteristics of GaAs field‐effect transistors , 1995 .

[20]  L. Eastman,et al.  Recessed gate GaN MODFETs , 1997 .

[21]  Michael B. Steer,et al.  Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-d systems , 2001 .

[22]  P. Romanini,et al.  Experimental validation of GaN HEMTs thermal management by using photocurrent measurements , 2006, IEEE Transactions on Electron Devices.

[23]  A. Balandin,et al.  Theoretical Investigation of Thermal Conductivity in Wurtzite GaN , 2002 .

[24]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[25]  Kiyomitsu Onodera,et al.  Device Temperature Measurement of Highly Biased AlGaN/GaN High-Electron-Mobility Transistors , 2003 .