Nine Mitochondrial Genomes of Phasmatodea with Two Novel Mitochondrial Gene Rearrangements and Phylogeny
暂无分享,去创建一个
L. Zhang | K. Storey | Ke Li | Jiayong Zhang | Danna Yu | Yuehuan Hong | Yani Yuan
[1] Congfen Zhang,et al. Organization of the mitochondrial genome of Ramulus irregulatiter dentatus (Phasmatidae: Phasmatidae) , 2022, Frontiers in Genetics.
[2] Hu Li,et al. Positive Correlation of the Gene Rearrangements and Evolutionary Rates in the Mitochondrial Genomes of Thrips (Insecta: Thysanoptera) , 2022, Insects.
[3] K. Storey,et al. Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea) , 2022, Insects.
[4] S. Bank,et al. A second view on the evolution of flight in stick and leaf insects (Phasmatodea) , 2022, BMC Ecology and Evolution.
[5] W. Bu,et al. Two new stick insect species of Sosibia Stål (Phasmatodea: Lonchodidae: Necrosciinae) from China and the first report on mitochondrial genomes of this genus. , 2022, Archives of insect biochemistry and physiology.
[6] K. Yoshizawa,et al. Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal , 2021, Systematic Entomology.
[7] K. Storey,et al. The mitochondrial genome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) and its phylogeny , 2021, Mitochondrial DNA. Part B, Resources.
[8] W. Bu,et al. The phylogenic position of aschiphasmatidae in euphasmatodea based on mitochondrial genomic evidence. , 2021, Gene.
[9] Bin Chen,et al. Complete mitogenomes of Anopheles peditaeniatus and Anopheles nitidus and phylogenetic relationships within the genus Anopheles inferred from mitogenomes , 2021, Parasites & vectors.
[10] K. Storey,et al. Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny , 2021, Insects.
[11] S. Bank,et al. A tree of leaves: Phylogeny and historical biogeography of the leaf insects (Phasmatodea: Phylliidae) , 2021, Communications biology.
[12] K. Storey,et al. Novel tRNA gene rearrangements in the mitochondrial genomes of praying mantises (Mantodea: Mantidae): Translocation, duplication and pseudogenization. , 2021, International journal of biological macromolecules.
[13] Thies H. Büscher,et al. Reconstructing the nonadaptive radiation of an ancient lineage of ground‐dwelling stick insects (Phasmatodea: Heteropterygidae) , 2021 .
[14] P. Donoghue,et al. Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian–Triassic co-origination with insectivores , 2020, Royal Society Open Science.
[15] Hu Li,et al. Novel tRNA gene rearrangements in the mitochondrial genome of Camarochiloides weiweii (Hemiptera: Pachynomidae). , 2020, International journal of biological macromolecules.
[16] A. Luchetti,et al. Phylomitogenomics provide new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). , 2020, Molecular phylogenetics and evolution.
[17] Xinghao Li,et al. Mitochondrial genomes of stick insects (Phasmatodea) and phylogenetic considerations , 2020, PloS one.
[18] W. Chow,et al. Significantly improving the quality of genome assemblies through curation , 2020, bioRxiv.
[19] John-James Wilson,et al. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). , 2020, International journal of biological macromolecules.
[20] S. Bank,et al. Notes on the leaf insects of the genus Phyllium of Sumatra and Java, Indonesia, including the description of two new species with purple coxae (Phasmatodea, Phylliidae). , 2020, ZooKeys.
[21] Hu Li,et al. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). , 2020, International journal of biological macromolecules.
[22] K. Chandra,et al. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta) , 2020, Scientific Reports.
[23] Olga Chernomor,et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.
[24] C. dePamphilis,et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.
[25] H. Letsch,et al. Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects , 2019, Front. Ecol. Evol..
[26] Patricia P. Chan,et al. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.
[27] F. Glaw,et al. When Giant Stick Insects Play With Colors: Molecular Phylogeny of the Achriopterini and Description of Two New Splendid Species (Phasmatodea: Achrioptera) From Madagascar , 2019, Front. Ecol. Evol..
[28] Yiyuan Li,et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization , 2019, Nucleic acids research.
[29] Xue-xin Chen,et al. The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphyta): Novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. , 2019, International journal of biological macromolecules.
[30] M. Whiting,et al. Evolution of Oviposition Techniques in Stick and Leaf Insects (Phasmatodea) , 2018, Front. Ecol. Evol..
[31] Jin Zhang,et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies , 2018, bioRxiv.
[32] S. Gorb,et al. The Evolution of Tarsal Adhesive Microstructures in Stick and Leaf Insects (Phasmatodea) , 2018, Front. Ecol. Evol..
[33] T. Buckley,et al. Biodiversity of Phasmatodea , 2018 .
[34] Long Chen,et al. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae) , 2018, Scientific Reports.
[35] K. Storey,et al. Higher tRNA gene duplication in mitogenomes of praying mantises (Dictyoptera, Mantodea) and the phylogeny within Mantodea. , 2018, International journal of biological macromolecules.
[36] K. Storey,et al. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae) , 2018, PeerJ.
[37] Zhijun Zhou,et al. Next-generation sequencing data used to determine the mitochondrial genomes and a preliminary phylogeny of Verophasmatodea insects , 2017 .
[38] R. Murphy,et al. Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri , 2016, BMC Genomics.
[39] Patrick Mardulyn,et al. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.
[40] F. Seow-Choen,et al. Revision of the Oriental subfamily Heteropteryginae Kirby, 1896, with a re-arrangement of the family Heteropterygidae and the descriptions of five new species of Haaniella Kirby, 1904. (Phasmatodea: Areolatae: Heteropterygidae). , 2016, Zootaxa.
[41] R. Shao,et al. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae) , 2016, Scientific Reports.
[42] P. You,et al. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes , 2016, Scientific Reports.
[43] Sudhir Kumar,et al. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.
[44] Yuan Huang,et al. Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. , 2016, Gene.
[45] Jacqueline A. Keane,et al. Circlator: automated circularization of genome assemblies using long sequencing reads , 2015, Genome Biology.
[46] T. Buckley,et al. Single origin of the Mascarene stick insects: ancient radiation on sunken islands? , 2015, BMC Evolutionary Biology.
[47] F. Lei,et al. Extreme variation in patterns of tandem repeats in mitochondrial control region of yellow-browed tits (Sylviparus modestus, Paridae) , 2015, Scientific Reports.
[48] J. Parkhill,et al. Circlator: automated circularization of genome assemblies using long sequencing reads , 2015, bioRxiv.
[49] P. Michalik,et al. Extreme convergence in egg-laying strategy across insect orders , 2015, Scientific Reports.
[50] S. Cameron. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research , 2014 .
[51] M. Whiting,et al. A molecular phylogeny of Phasmatodea with emphasis on Necrosciinae, the most species‐rich subfamily of stick insects , 2014 .
[52] S. Cameron. Insect mitochondrial genomics: implications for evolution and phylogeny. , 2014, Annual review of entomology.
[53] P. Stadler,et al. MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.
[54] L. Bachmann,et al. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach , 2013, Nucleic acids research.
[55] K. Katoh,et al. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.
[56] X. Xue,et al. The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions. , 2012, Gene.
[57] R. Lanfear,et al. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.
[58] A. Vogler,et al. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). , 2012, Molecular phylogenetics and evolution.
[59] R. Beutel,et al. On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta) , 2012 .
[60] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[61] S. Tomita,et al. The mitochondrial genome of a stick insect Extatosoma tiaratum (Phasmatodea) and the phylogeny of polyneopteran insects , 2011 .
[62] A. Ricci,et al. The mitochondrial genome of Bacillus stick insects (Phasmatodea) and the phylogeny of orthopteroid insects. , 2011, Molecular phylogenetics and evolution.
[63] M. Sharkey,et al. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects , 2010, BMC Genomics.
[64] T. Buckley,et al. Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster , 2009, Proceedings of the Royal Society B: Biological Sciences.
[65] M. Whiting,et al. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. , 2008, Molecular phylogenetics and evolution.
[66] Paul Stothard,et al. The CGView Server: a comparative genomics tool for circular genomes , 2008, Nucleic Acids Res..
[67] J. Boore,et al. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.
[68] A. Austin,et al. Frequent Mitochondrial Gene Rearrangements at the Hymenopteran nad3–nad5 Junction , 2003, Journal of Molecular Evolution.
[69] R. Shao,et al. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. , 2003, Molecular biology and evolution.
[70] Taylor J. Maxwell,et al. Loss and recovery of wings in stick insects , 2003, Nature.
[71] P. D. Brock,et al. Studies on the leaf insects (Phasmida: Phylliidae) of Australia , 2002 .
[72] E. Tilgner. Systematics of phasmida , 2002 .
[73] A. Austin,et al. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome 'morphology' , 2002 .
[74] J. Boore,et al. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. , 2002, Molecular biology and evolution.
[75] X. Xia,et al. DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.
[76] M. Dowton,et al. Intramitochondrial recombination - is it why some mitochondrial genes sleep around? , 2001, Trends in ecology & evolution.
[77] S. Lalitha. Primer Premier 5 , 2000 .
[78] P. Holland,et al. Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.
[79] Wei Qian,et al. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.
[80] C. Gissi,et al. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. , 1999, Gene.
[81] D. Lunt,et al. Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology , 1998, Molecular ecology.
[82] G. Hewitt,et al. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies , 1997 .
[83] A. Austin,et al. Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera , 1995, Journal of Molecular Evolution.
[84] Timothy M. Collins,et al. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.
[85] G. Gutman,et al. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.
[86] M. Solignac,et al. Concerted evolution of sequence repeats inDrosophila mitochondrial DNA , 1986, Journal of Molecular Evolution.
[87] L. Ernster,et al. Mitochondria: a historical review , 1981, The Journal of cell biology.
[88] W. Brown,et al. Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[89] K. Günther. Über die taxonomische Gliederung und die geographische Verbreitung der Insektenordnung der Phasmatodea. , 1953 .
[90] K. Sarahban. Reconstructing the nonadaptive radiation of an ancient lineage of ground-dwelling stick insects (Phasmatodea: Heteropterygidae) , 2021 .
[91] Nicolas Dierckxsens,et al. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.
[92] S. Tomita,et al. Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. , 2011, Molecular phylogenetics and evolution.
[93] M. Whiting,et al. Mitochondrial genomics and the new insect order Mantophasmatodea. , 2006, Molecular phylogenetics and evolution.
[94] Nicole T. Perna,et al. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.
[95] J. Boore. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deu , 2000 .
[96] T G Burland,et al. DNASTAR's Lasergene sequence analysis software. , 2000, Methods in molecular biology.
[97] G. Benson,et al. Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.
[98] J. Sellick. The range of egg capsule morphology within the phasmatodea and its relevance to the taxonomy of the order , 1997 .
[99] B. Galil,et al. The taxonomic arrangement of the Phasmatodea with keys to the subfamilies and tribes , 1977 .
[100] G. Crampton. The lines of descent of the lower pterygotan insects, with notes on the relationships of the other forms , 1916 .