Nine Mitochondrial Genomes of Phasmatodea with Two Novel Mitochondrial Gene Rearrangements and Phylogeny

Simple Summary Stick and leaf insects are herbivorous species widely distributed in tropical and subtropical areas, disguising themselves as leaves, twigs, or moss through morphology and behavior to avoid visually hunting predators. Currently, Phasmatodea present difficulties in taxonomy, and their phylogeny is unresolved. Mitochondria, as maternally inherited organelles, also contain evolutionary information. Compared to nuclear genes, mitogenomes have become a powerful marker for inferring phylogenetic relationships due to advantages including fast evolution rates, conserved structure, and easy amplification. With rapid advances in sequencing technology and assembly algorithms, mitogenomes can be sequenced in a very cost-effective way. As of March 2023, there are thirty-seven complete or nearly complete Phasmatodea mitogenomes listed in the NCBI. Considering the richness of Phasmatodea, additional study is warranted. In the present study, nine new mitogenomes were sequenced to examine gene rearrangements and phylogenetic relationships within the Phasmatodea. Abstract The classification of stick and leaf insects (Order Phasmatodea) is flawed at various taxonomic ranks due to a lack of robust phylogenetic relationships and convergent morphological characteristics. In this study, we sequenced nine new mitogenomes that ranged from 15,011 bp to 17,761 bp in length. In the mitogenome of Carausis sp., we found a translocation of trnR and trnA, which can be explained by the tandem duplication/random loss (TDRL) model. In the Stheneboea repudiosa Brunner von Wattenwyl, 1907, a novel mitochondrial structure of 12S rRNA-CR1-trnI-CR2-trnQ-trnM was found for the first time in Phasmatodea. Due to the low homology of CR1 and CR2, we hypothesized that trnI was inverted through recombination and then translocated into the middle of the control region. Control region repeats were frequently detected in the newly sequenced mitogenomes. To explore phylogenetic relationships in Phasmatodea, mtPCGs from 56 Phasmatodean species (composed of 9 stick insects from this study, 31 GenBank data, and 16 data derived from transcriptome splicing) were used for Bayesian inference (BI), and maximum likelihood (ML) analyses. Both analyses supported the monophyly of Lonchodinae and Necrosciinae, but Lonchodidae was polyphyletic. Phasmatidae was monophyletic, and Clitumninae was paraphyletic. Phyllidae was located at the base of Neophasmatodea and formed a sister group with the remaining Neophasmatodea. Bacillidae and Pseudophasmatidae were recovered as a sister group. Heteroptergidae was monophyletic, and the Heteropteryginae sister to the clade (Obriminae + Dataminae) was supported by BI analysis and ML analysis.

[1]  Congfen Zhang,et al.  Organization of the mitochondrial genome of Ramulus irregulatiter dentatus (Phasmatidae: Phasmatidae) , 2022, Frontiers in Genetics.

[2]  Hu Li,et al.  Positive Correlation of the Gene Rearrangements and Evolutionary Rates in the Mitochondrial Genomes of Thrips (Insecta: Thysanoptera) , 2022, Insects.

[3]  K. Storey,et al.  Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea) , 2022, Insects.

[4]  S. Bank,et al.  A second view on the evolution of flight in stick and leaf insects (Phasmatodea) , 2022, BMC Ecology and Evolution.

[5]  W. Bu,et al.  Two new stick insect species of Sosibia Stål (Phasmatodea: Lonchodidae: Necrosciinae) from China and the first report on mitochondrial genomes of this genus. , 2022, Archives of insect biochemistry and physiology.

[6]  K. Yoshizawa,et al.  Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal , 2021, Systematic Entomology.

[7]  K. Storey,et al.  The mitochondrial genome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) and its phylogeny , 2021, Mitochondrial DNA. Part B, Resources.

[8]  W. Bu,et al.  The phylogenic position of aschiphasmatidae in euphasmatodea based on mitochondrial genomic evidence. , 2021, Gene.

[9]  Bin Chen,et al.  Complete mitogenomes of Anopheles peditaeniatus and Anopheles nitidus and phylogenetic relationships within the genus Anopheles inferred from mitogenomes , 2021, Parasites & vectors.

[10]  K. Storey,et al.  Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny , 2021, Insects.

[11]  S. Bank,et al.  A tree of leaves: Phylogeny and historical biogeography of the leaf insects (Phasmatodea: Phylliidae) , 2021, Communications biology.

[12]  K. Storey,et al.  Novel tRNA gene rearrangements in the mitochondrial genomes of praying mantises (Mantodea: Mantidae): Translocation, duplication and pseudogenization. , 2021, International journal of biological macromolecules.

[13]  Thies H. Büscher,et al.  Reconstructing the nonadaptive radiation of an ancient lineage of ground‐dwelling stick insects (Phasmatodea: Heteropterygidae) , 2021 .

[14]  P. Donoghue,et al.  Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian–Triassic co-origination with insectivores , 2020, Royal Society Open Science.

[15]  Hu Li,et al.  Novel tRNA gene rearrangements in the mitochondrial genome of Camarochiloides weiweii (Hemiptera: Pachynomidae). , 2020, International journal of biological macromolecules.

[16]  A. Luchetti,et al.  Phylomitogenomics provide new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). , 2020, Molecular phylogenetics and evolution.

[17]  Xinghao Li,et al.  Mitochondrial genomes of stick insects (Phasmatodea) and phylogenetic considerations , 2020, PloS one.

[18]  W. Chow,et al.  Significantly improving the quality of genome assemblies through curation , 2020, bioRxiv.

[19]  John-James Wilson,et al.  Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). , 2020, International journal of biological macromolecules.

[20]  S. Bank,et al.  Notes on the leaf insects of the genus Phyllium of Sumatra and Java, Indonesia, including the description of two new species with purple coxae (Phasmatodea, Phylliidae). , 2020, ZooKeys.

[21]  Hu Li,et al.  Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). , 2020, International journal of biological macromolecules.

[22]  K. Chandra,et al.  Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta) , 2020, Scientific Reports.

[23]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[24]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[25]  H. Letsch,et al.  Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects , 2019, Front. Ecol. Evol..

[26]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[27]  F. Glaw,et al.  When Giant Stick Insects Play With Colors: Molecular Phylogeny of the Achriopterini and Description of Two New Splendid Species (Phasmatodea: Achrioptera) From Madagascar , 2019, Front. Ecol. Evol..

[28]  Yiyuan Li,et al.  MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization , 2019, Nucleic acids research.

[29]  Xue-xin Chen,et al.  The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphyta): Novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. , 2019, International journal of biological macromolecules.

[30]  M. Whiting,et al.  Evolution of Oviposition Techniques in Stick and Leaf Insects (Phasmatodea) , 2018, Front. Ecol. Evol..

[31]  Jin Zhang,et al.  PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies , 2018, bioRxiv.

[32]  S. Gorb,et al.  The Evolution of Tarsal Adhesive Microstructures in Stick and Leaf Insects (Phasmatodea) , 2018, Front. Ecol. Evol..

[33]  T. Buckley,et al.  Biodiversity of Phasmatodea , 2018 .

[34]  Long Chen,et al.  Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae) , 2018, Scientific Reports.

[35]  K. Storey,et al.  Higher tRNA gene duplication in mitogenomes of praying mantises (Dictyoptera, Mantodea) and the phylogeny within Mantodea. , 2018, International journal of biological macromolecules.

[36]  K. Storey,et al.  Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae) , 2018, PeerJ.

[37]  Zhijun Zhou,et al.  Next-generation sequencing data used to determine the mitochondrial genomes and a preliminary phylogeny of Verophasmatodea insects , 2017 .

[38]  R. Murphy,et al.  Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri , 2016, BMC Genomics.

[39]  Patrick Mardulyn,et al.  NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.

[40]  F. Seow-Choen,et al.  Revision of the Oriental subfamily Heteropteryginae Kirby, 1896, with a re-arrangement of the family Heteropterygidae and the descriptions of five new species of Haaniella Kirby, 1904. (Phasmatodea: Areolatae: Heteropterygidae). , 2016, Zootaxa.

[41]  R. Shao,et al.  Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae) , 2016, Scientific Reports.

[42]  P. You,et al.  Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes , 2016, Scientific Reports.

[43]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[44]  Yuan Huang,et al.  Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. , 2016, Gene.

[45]  Jacqueline A. Keane,et al.  Circlator: automated circularization of genome assemblies using long sequencing reads , 2015, Genome Biology.

[46]  T. Buckley,et al.  Single origin of the Mascarene stick insects: ancient radiation on sunken islands? , 2015, BMC Evolutionary Biology.

[47]  F. Lei,et al.  Extreme variation in patterns of tandem repeats in mitochondrial control region of yellow-browed tits (Sylviparus modestus, Paridae) , 2015, Scientific Reports.

[48]  J. Parkhill,et al.  Circlator: automated circularization of genome assemblies using long sequencing reads , 2015, bioRxiv.

[49]  P. Michalik,et al.  Extreme convergence in egg-laying strategy across insect orders , 2015, Scientific Reports.

[50]  S. Cameron How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research , 2014 .

[51]  M. Whiting,et al.  A molecular phylogeny of Phasmatodea with emphasis on Necrosciinae, the most species‐rich subfamily of stick insects , 2014 .

[52]  S. Cameron Insect mitochondrial genomics: implications for evolution and phylogeny. , 2014, Annual review of entomology.

[53]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[54]  L. Bachmann,et al.  Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach , 2013, Nucleic acids research.

[55]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[56]  X. Xue,et al.  The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions. , 2012, Gene.

[57]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[58]  A. Vogler,et al.  Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). , 2012, Molecular phylogenetics and evolution.

[59]  R. Beutel,et al.  On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta) , 2012 .

[60]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[61]  S. Tomita,et al.  The mitochondrial genome of a stick insect Extatosoma tiaratum (Phasmatodea) and the phylogeny of polyneopteran insects , 2011 .

[62]  A. Ricci,et al.  The mitochondrial genome of Bacillus stick insects (Phasmatodea) and the phylogeny of orthopteroid insects. , 2011, Molecular phylogenetics and evolution.

[63]  M. Sharkey,et al.  Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects , 2010, BMC Genomics.

[64]  T. Buckley,et al.  Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster , 2009, Proceedings of the Royal Society B: Biological Sciences.

[65]  M. Whiting,et al.  A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. , 2008, Molecular phylogenetics and evolution.

[66]  Paul Stothard,et al.  The CGView Server: a comparative genomics tool for circular genomes , 2008, Nucleic Acids Res..

[67]  J. Boore,et al.  Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.

[68]  A. Austin,et al.  Frequent Mitochondrial Gene Rearrangements at the Hymenopteran nad3–nad5 Junction , 2003, Journal of Molecular Evolution.

[69]  R. Shao,et al.  The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. , 2003, Molecular biology and evolution.

[70]  Taylor J. Maxwell,et al.  Loss and recovery of wings in stick insects , 2003, Nature.

[71]  P. D. Brock,et al.  Studies on the leaf insects (Phasmida: Phylliidae) of Australia , 2002 .

[72]  E. Tilgner Systematics of phasmida , 2002 .

[73]  A. Austin,et al.  Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome 'morphology' , 2002 .

[74]  J. Boore,et al.  Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. , 2002, Molecular biology and evolution.

[75]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[76]  M. Dowton,et al.  Intramitochondrial recombination - is it why some mitochondrial genes sleep around? , 2001, Trends in ecology & evolution.

[77]  S. Lalitha Primer Premier 5 , 2000 .

[78]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[79]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[80]  C. Gissi,et al.  Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. , 1999, Gene.

[81]  D. Lunt,et al.  Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology , 1998, Molecular ecology.

[82]  G. Hewitt,et al.  Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies , 1997 .

[83]  A. Austin,et al.  Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera , 1995, Journal of Molecular Evolution.

[84]  Timothy M. Collins,et al.  Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.

[85]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[86]  M. Solignac,et al.  Concerted evolution of sequence repeats inDrosophila mitochondrial DNA , 1986, Journal of Molecular Evolution.

[87]  L. Ernster,et al.  Mitochondria: a historical review , 1981, The Journal of cell biology.

[88]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[89]  K. Günther Über die taxonomische Gliederung und die geographische Verbreitung der Insektenordnung der Phasmatodea. , 1953 .

[90]  K. Sarahban Reconstructing the nonadaptive radiation of an ancient lineage of ground-dwelling stick insects (Phasmatodea: Heteropterygidae) , 2021 .

[91]  Nicolas Dierckxsens,et al.  NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.

[92]  S. Tomita,et al.  Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. , 2011, Molecular phylogenetics and evolution.

[93]  M. Whiting,et al.  Mitochondrial genomics and the new insect order Mantophasmatodea. , 2006, Molecular phylogenetics and evolution.

[94]  Nicole T. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.

[95]  J. Boore The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deu , 2000 .

[96]  T G Burland,et al.  DNASTAR's Lasergene sequence analysis software. , 2000, Methods in molecular biology.

[97]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[98]  J. Sellick The range of egg capsule morphology within the phasmatodea and its relevance to the taxonomy of the order , 1997 .

[99]  B. Galil,et al.  The taxonomic arrangement of the Phasmatodea with keys to the subfamilies and tribes , 1977 .

[100]  G. Crampton The lines of descent of the lower pterygotan insects, with notes on the relationships of the other forms , 1916 .