Cortical speech processing unplugged: a timely subcortico-cortical framework

[1]  Stefan Klöppel,et al.  Combining Functional and Anatomical Connectivity Reveals Brain Networks for Auditory Language Comprehension , 2022 .

[2]  S. Kotz,et al.  Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception , 2009, Cortex.

[3]  Fenna M. Krienen,et al.  Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity , 2009, Cerebral cortex.

[4]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[5]  Angela D. Friederici,et al.  Pathways to language: fiber tracts in the human brain , 2009, Trends in Cognitive Sciences.

[6]  Steven Greenberg,et al.  On the Possible Role of Brain Rhythms in Speech Perception: Intelligibility of Time-Compressed Speech with Periodic and Aperiodic Insertions of Silence , 2009, Phonetica.

[7]  Sophie K. Scott,et al.  A little more conversation, a little less action — candidate roles for the motor cortex in speech perception , 2009, Nature Reviews Neuroscience.

[8]  Usha Goswami,et al.  Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat , 2009, Cortex.

[9]  Matthew F Glasser,et al.  DTI tractography of the human brain's language pathways. , 2008, Cerebral cortex.

[10]  Karl J. Friston,et al.  Frequency-Specific Coupling in the Cortico-Cerebellar Auditory System , 2008, Journal of neurophysiology.

[11]  D. Bendor,et al.  Neural coding of temporal information in auditory thalamus and cortex , 2008, Neuroscience.

[12]  Greg Kochanski,et al.  What marks the beat of speech? , 2008, The Journal of the Acoustical Society of America.

[13]  D. Abrams,et al.  Right-Hemisphere Auditory Cortex Is Dominant for Coding Syllable Patterns in Speech , 2008, The Journal of Neuroscience.

[14]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[15]  A. Puce,et al.  Neuronal oscillations and visual amplification of speech , 2008, Trends in Cognitive Sciences.

[16]  Richard S. J. Frackowiak,et al.  Endogenous Cortical Rhythms Determine Cerebral Specialization for Speech Perception and Production , 2007, Neuron.

[17]  P. Strick,et al.  Supplementary Motor Area and Presupplementary Motor Area: Targets of Basal Ganglia and Cerebellar Output , 2007, The Journal of Neuroscience.

[18]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[19]  W. Waleszczyk,et al.  Spatial and temporal visual properties of single neurons in the suprageniculate nucleus of the thalamus , 2006, Neuroscience.

[20]  A. Dagher,et al.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. , 2006, Cerebral cortex.

[21]  F. Guenther Cortical interactions underlying the production of speech sounds. , 2006, Journal of communication disorders.

[22]  Richard S. Frackowiak,et al.  The neural basis of temporal auditory discrimination , 2006, NeuroImage.

[23]  M. Schönwiesner,et al.  Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. , 2006, Cerebral cortex.

[24]  L. Cohen,et al.  The role of the supplementary motor area (SMA) in word production , 2006, Brain Research.

[25]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[26]  Catalin V. Buhusi,et al.  What makes us tick? Functional and neural mechanisms of interval timing , 2005, Nature Reviews Neuroscience.

[27]  Angela R Laird,et al.  Cerebellum and auditory function: An ALE meta‐analysis of functional neuroimaging studies , 2005, Human brain mapping.

[28]  A. H. Weaver,et al.  Reciprocal evolution of the cerebellum and neocortex in fossil humans. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[30]  S. Lehéricy,et al.  3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. , 2004, Cerebral cortex.

[31]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[32]  David Poeppel,et al.  Towards a new functional anatomy of language , 2004, Cognition.

[33]  Xiaoqin Wang,et al.  Cortical processing of temporal modulations , 2003, Speech Commun..

[34]  Alain de Cheveigné,et al.  Time-domain auditory processing of speech , 2003, J. Phonetics.

[35]  Robert F. Port,et al.  Meter and speech , 2003, J. Phonetics.

[36]  Steven Greenberg,et al.  Temporal properties of spontaneous speech - a syllable-centric perspective , 2003, J. Phonetics.

[37]  Aniruddh D. Patel,et al.  Language, music, syntax and the brain , 2003, Nature Neuroscience.

[38]  Brian C. J. Moore,et al.  Temporal integration and context effects in hearing , 2003, J. Phonetics.

[39]  Karl Zilles,et al.  Expansion of the neocerebellum in Hominoidea. , 2003, Journal of human evolution.

[40]  Adam Kepecs,et al.  Information encoding and computation with spikes and bursts , 2003, Network.

[41]  P. Lieberman On the nature and evolution of the neural bases of human language. , 2002, American journal of physical anthropology.

[42]  Jufang He,et al.  Differential distribution of burst and single-spike responses in auditory thalamus. , 2002, Journal of neurophysiology.

[43]  P. MacNeilage,et al.  Motor mechanisms in speech ontogeny: phylogenetic, neurobiological and linguistic implications , 2001, Current Opinion in Neurobiology.

[44]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[45]  H. Scheich,et al.  Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures , 2000, The European journal of neuroscience.

[46]  P. Strick,et al.  Basal ganglia and cerebellar loops: motor and cognitive circuits , 2000, Brain Research Reviews.

[47]  P. Chauvel,et al.  Specialization of left auditory cortex for speech perception in man depends on temporal coding. , 1999, Cerebral cortex.

[48]  X. F. Wang,et al.  Acoustic transmission in the dentate nucleus I. Patterns of activity to click and hiss; II. Changes in activity and excitability after conditioning , 1998, Brain Research.

[49]  E. Pöppel,et al.  A hierarchical model of temporal perception , 1997, Trends in Cognitive Sciences.

[50]  G. Kovács,et al.  Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus , 1997, Neuroscience.

[51]  D. K. Morest,et al.  Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns , 1997, Hearing Research.

[52]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[53]  H. Saito,et al.  Retrograde axonal transport of different fluorescent tracers from the neocortex to the suprageniculate nucleus in the rat , 1995, Hearing Research.

[54]  Y. Katoh,et al.  Bilateral projections from the superior colliculus to the suprageniculate nucleus in the cat: A WGA-HRP/double fluorescent tracing study , 1995, Brain Research.

[55]  C. Woody,et al.  Identification of short latency auditory responsive neurons in the cat dentate nucleus. , 1994, Neuroreport.

[56]  A. L. Leiner,et al.  Cognitive and language functions of the human cerebellum , 1993, Trends in Neurosciences.

[57]  S. Deura,et al.  Direct projections from the cerebellar fastigial nucleus to the thalamic suprageniculate nucleus in the cat studied with the anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase , 1993, Brain Research.

[58]  S. Rosen Temporal information in speech: acoustic, auditory and linguistic aspects. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  X. F. Wang,et al.  The dentate nucleus is a short-latency relay of a primary auditory transmission pathway. , 1991, Neuroreport.

[60]  Tetsuro Yamamoto,et al.  Frontal cortical projections from the suprageniculate nucleus in the rat, as demonstrated with the PHA-L method , 1990, Neuroscience Letters.

[61]  J. Kobler,et al.  Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. , 1987, Science.

[62]  Rosa H. Huang,et al.  Projections from the cochlear nucleus to the cerebellum , 1982, Brain Research.

[63]  Geoffrey R Hammond,et al.  Hemispheric differences in temporal resolution , 1982, Brain and Cognition.

[64]  J. A. Altman,et al.  Electrical responses of the auditory area of the cerebellar cortex to acoustic stimulation , 1976, Experimental Brain Research.

[65]  J. Morton,et al.  Perceptual centers (P-centers). , 1976 .

[66]  Brian L. Scott,et al.  Burst Cues, Transition Cues, and Hemispheric Specialization with Real Speech Sounds , 1975 .

[67]  K. Bignall Auditory input to frontal polysensory cortex of the squirrel monkey: possible pathways. , 1970, Brain research.

[68]  Z. Harris,et al.  Foundations of Language , 1940 .

[69]  Mitsuo Kawato,et al.  Speech and song: The role of the cerebellum , 2008, The Cerebellum.

[70]  P. MacNeilage The origin of speech , 2008 .

[71]  C. Huang,et al.  Organization of the auditory area in the posterior cerebellar vermis of the cat , 2004, Experimental Brain Research.

[72]  P. Strick,et al.  An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. , 2003, Journal of neurophysiology.

[73]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[74]  A. Graybiel The basal ganglia and cognitive pattern generators. , 1997, Schizophrenia bulletin.

[75]  L. A. Jeffress,et al.  Cerebral Mechanisms in Behavior , 1953 .

[76]  K. Lashley The problem of serial order in behavior , 1951 .