Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions.

Molybdenum boride (MoB) and carbide (Mo2C) are excellent catalysts for electrochemical hydrogen evolution at both pH 0 and pH 14.

[1]  H. Vrubel,et al.  Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution , 2012 .

[2]  Mei Wang,et al.  Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts , 2012 .

[3]  Jingguang G. Chen,et al.  Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range , 2012 .

[4]  H. Vrubel,et al.  Hydrogen evolution catalyzed by MoS3 and MoS2 particles , 2012 .

[5]  Pingwu Du,et al.  Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges , 2012 .

[6]  J. Long,et al.  A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation , 2012, Science.

[7]  Jingguang G. Chen,et al.  A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. , 2012, Journal of the American Chemical Society.

[8]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[9]  V. Stamenkovic,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces , 2011, Science.

[10]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[11]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[12]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[13]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[14]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[15]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[16]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[17]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[18]  Christopher J. Chang,et al.  A molecular molybdenum-oxo catalyst for generating hydrogen from water , 2010, Nature.

[19]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[20]  Jingguang G. Chen,et al.  Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts , 2009 .

[21]  Daniel L DuBois,et al.  The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. , 2009, Chemical Society reviews.

[22]  T. Jaramillo,et al.  Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ Electrocatalysts , 2008 .

[23]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[24]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[25]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[26]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[27]  M. Fontecave,et al.  Some general principles for designing electrocatalysts with hydrogenase activity , 2005 .

[28]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[29]  S. Omi,et al.  Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS , 2001 .

[30]  G. Schiller,et al.  High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer , 1998 .

[31]  C. Cummins,et al.  A terminal molybdenum carbide prepared by methylidyne deprotonation , 1997 .

[32]  B. Brox,et al.  ESCA Studies of MoO2 and MoO3 , 1988 .

[33]  J. Fierro,et al.  Characterization of silica-supported uranium-molybdenum oxide catalysts , 1985 .

[34]  E. C. Potter,et al.  The Mechanism of the Cathodic Hydrogen Evolution Reaction , 1952 .