First principles studies of multiferroic materials

Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO(3) as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO(3), ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO(3)), the magnetically induced ferroelectric polarization can be as large as a few µC cm(-2). The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the fundamental side, ab initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.

[1]  Minoru Noda,et al.  Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film , 2004 .

[2]  Hans Schmid,et al.  Multi-ferroic magnetoelectrics , 1994 .

[3]  M. T. Casais,et al.  Charge disproportionation in RNiO 3 perovskites , 2000 .

[4]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[5]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[6]  G. Giovannetti,et al.  Magnetically induced electronic ferroelectricity in half-doped manganites. , 2008, Physical review letters.

[7]  J. Goodenough,et al.  Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. , 2006, Physical review letters.

[8]  J. Attfield,et al.  Charge ordered structure of magnetite Fe 3 O 4 below the Verwey transition , 2002 .

[9]  E. Dagotto,et al.  Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites , 2005, cond-mat/0508075.

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  C. Fennie,et al.  Electric-field switchable magnetization via the Dzyaloshinskii–Moriya interaction: FeTiO3 versus BiFeO3 , 2008, 0806.0589.

[12]  J. Haeni Room‐Temperature Ferroelectricity in Strained SrTiO3. , 2004 .

[13]  H. Christen,et al.  Large ferroelectric polarization in antiferromagnetic BiFe0.5Cr0.5O3 epitaxial films , 2007 .

[14]  M. Lumsden,et al.  Charge order in LuFe2O4: antiferroelectric ground state and coupling to magnetism. , 2008, Physical review letters.

[15]  Roman Caudillo,et al.  Hexagonal versus perovskite phase of manganite R Mn O 3 ( R = Y , Ho , Er , Tm , Yb , Lu ) , 2006 .

[16]  J. Mitchell,et al.  Neutron diffraction study of average and local structure in La 0.5 Ca 0.5 Mn O 3 , 2004, cond-mat/0411591.

[17]  J. van den Brink,et al.  Multiferroicity due to charge ordering , 2008, 0803.2964.

[18]  Chun-Gang Duan,et al.  Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. , 2006, Physical review letters.

[19]  C. Greaves,et al.  Structural, magnetic and electronic properties of Fe0.5Cu0.5Cr2S4 , 1999 .

[20]  M. T. Casais,et al.  Room-temperature monoclinic distortion due to charge disproportionation in R NiO 3 perovskites with small rare-earth cations ( R = Ho , Y, Er, Tm, Yb, and Lu): A neutron diffraction study , 2000 .

[21]  M. T. Casais,et al.  Complex Magnetism and Magnetic Structures of the Metastable HoMnO3 Perovskite , 2001 .

[22]  M. T. Casais,et al.  METAL-INSULATOR TRANSITIONS, STRUCTURAL AND MICROSTRUCTURAL EVOLUTION OF RNIO3 (R = SM, EU, GD, DY, HO, Y) PEROVSKITES : EVIDENCE FOR ROOM-TEMPERATURE CHARGE DISPROPORTIONATION IN MONOCLINIC HONIO3 AND YNIO3 , 1999 .

[23]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[24]  M. Viret,et al.  Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields , 2007, 0706.1681.

[25]  Yuichi Yamasaki,et al.  Erratum: Electric Control of Spin Helicity in a Magnetic Ferroelectric [Phys. Rev. Lett. 98, 147204 , 2008 .

[26]  J. Rondinelli,et al.  Non-$d^0$ Mn-driven ferroelectricity in antiferromagnetic BaMnO$_3$ , 2009, 0901.3333.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Maxim Mostovoy,et al.  Ferroelectricity in spiral magnets. , 2005, Physical review letters.

[29]  D. Vanderbilt,et al.  First principles study of improper ferroelectricity in TbMnO3. , 2008, Physical review letters.

[30]  J. Neaton,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO3 , 2005 .

[31]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[32]  E. Dagotto,et al.  Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. , 2007, Physical review letters.

[33]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[34]  E Steichele,et al.  Spiral magnetic ordering in bismuth ferrite , 1982 .

[35]  J. H. van Santen,et al.  Ferromagnetic compounds of manganese with perovskite structure , 1950 .

[36]  The ferroelectric transition in YMnO$_3$ from first principles , 2005, cond-mat/0504542.

[37]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[38]  K. H. Andersen,et al.  Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese , 2002 .

[39]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[40]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[41]  H J Xiang,et al.  Density-functional characterization of the multiferroicity in spin spiral chain cuprates. , 2007, Physical review letters.

[42]  M. Blamire,et al.  Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures" , 2005, Science.

[43]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[44]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[45]  Erich Wimmer,et al.  Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule , 1981 .

[46]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[47]  H. Fjellvåg,et al.  Theoretical investigation of magnetoelectric behavior in BiFeO3 , 2006 .

[48]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[49]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[50]  M. Janousch,et al.  Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO 3 , 2006, cond-mat/0603496.

[51]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[52]  S. V. Kiselev,et al.  Detection of Magnetic Order in Ferroelectric BiFeO 3 by Neutron Diffraction , 1963 .

[53]  J. van den Brink,et al.  Bond- versus site-centred ordering and possible ferroelectricity in manganites , 2004, Nature materials.

[54]  E. Dzialoshinskii,et al.  Thermodynamic Theory of " Weak " Ferromagnetism In Antiferromagnetic Substances , 2022 .

[55]  L. Tjeng,et al.  Ising magnetism and ferroelectricity in Ca3CoMnO6. , 2008, Physical review letters.

[56]  M. T. Casais,et al.  Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO3 , 1999 .

[57]  H. Xiang,et al.  Spin-orbit coupling and ion displacements in multiferroic TbMnO3. , 2008, Physical review letters.

[58]  S. Heinze,et al.  Maximally localized Wannier functions within the FLAPW formalism , 2008, 0806.3213.

[59]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[60]  N. A. Hill Density Functional Studies of Multiferroic Magnetoelectrics , 2002 .

[61]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[62]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[63]  S. Cheong,et al.  Charge, orbital, and magnetic ordering in La0.5 Ca0.5 MnO3s , 1997 .

[64]  C. Fennie Ferroelectrically induced weak ferromagnetism by design. , 2007, Physical review letters.

[65]  N. Spaldin,et al.  Ab initio prediction of a multiferroic with large polarization and magnetization , 2004, cond-mat/0410268.

[66]  Charge order and the origin of giant magnetocapacitance in LuFe2O4. , 2007, Physical review letters.

[67]  D. Koelling,et al.  A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions , 1980 .

[68]  P. Fischer,et al.  Temperature dependence of the crystal and magnetic structures of BiFeO3 , 1980 .

[69]  Y. Joly,et al.  Low-temperature structure of magnetite studied using resonant x-ray scattering , 2008 .

[70]  Nicola A. Spaldin,et al.  First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3 : Structure, polarization, and magnetic ordering temperature , 2005, cond-mat/0508362.

[71]  G. Guo,et al.  Charge-orbital ordering in low-temperature structures of magnetite: GGA+U investigations , 2006 .

[72]  C. L. Zhang,et al.  Origin of electromagnon excitations in multiferroic RMnO3. , 2008, Physical review letters.

[73]  Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite , 2005, cond-mat/0502364.

[74]  A. Zvezdin,et al.  LINEAR MAGNETOELECTRIC EFFECT AND PHASE-TRANSITIONS IN BISMUTH FERRITE, BIFEO3 , 1993 .

[75]  U. Gösele,et al.  Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films , 2009 .

[76]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[77]  L. E. Cross,et al.  Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization , 2005 .

[78]  M. Okuyama,et al.  A mechanism for the 150 µC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[79]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[80]  Georg Kresse,et al.  Fully unconstrained noncollinear magnetism within the projector augmented-wave method , 2000 .

[81]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[82]  R. Klie,et al.  Experimental confirmation of Zener-polaron-type charge and orbital ordering in Pr1−xCaxMnO3 , 2007 .

[83]  M. Suchomel,et al.  High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe1∕2Cr1∕2)O3 , 2007 .

[84]  N. Spaldin,et al.  Electric-field-switchable magnets: The case of BaNiF 4 , 2006 .

[85]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[86]  E. Dagotto,et al.  Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. , 2006, Physical review letters.

[87]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[88]  Karin M Rabe,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[89]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[90]  Origin of ferroelectricity in the multiferroic barium fluorides BaM F4: A first principles study , 2006, cond-mat/0605042.

[91]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[92]  Nicola A. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2005 .

[93]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[94]  F. Freimuth,et al.  Magnetically induced ferroelectricity in orthorhombic manganites: Microscopic origin and chemical trends , 2008, 0803.1166.

[95]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[96]  K. Yamauchi,et al.  Ferroelectricity in multiferroic magnetite Fe 3 O 4 driven by noncentrosymmetric Fe 2 + / Fe 3 + charge-ordering: First-principles study , 2009, 0906.0492.

[97]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[98]  Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films , 2007, 0710.5208.

[99]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[100]  J. Attfield,et al.  Long range charge ordering in magnetite below the Verwey transition. , 2001, Physical review letters.

[101]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[102]  Philippe Ghosez,et al.  Engineering multiferroism in CaMnO3. , 2008, Physical review letters.

[103]  M. Tachibana,et al.  Jahn-Teller distortion and magnetic transitions in perovskiteRMnO3(R=Ho, Er, Tm, Yb, and Lu) , 2007 .

[104]  A. Filippetti,et al.  Coexistence of magnetism and ferroelectricity in perovskites , 2002 .

[105]  J. Rodríguez-Carvajal,et al.  Zener polaron ordering in half-doped manganites. , 2002, Physical review letters.

[106]  A. B. Harris,et al.  Evidence for large electric polarization from collinear magnetism in TmMnO3 , 2009, 0901.0787.

[107]  David J. Singh,et al.  Interplay between A -site and B -site driven instabilities in perovskites , 2005 .

[108]  Multiferroics: different ways to combine magnetism and ferroelectricity , 2006, cond-mat/0601696.

[109]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[110]  N. Spaldin,et al.  Trilayer superlattices: A route to magnetoelectric multiferroics? , 2007, 0704.0781.

[111]  Nicola A. Spaldin,et al.  Recent progress in first-principles studies of magnetoelectric multiferroics , 2005 .

[112]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[113]  Hans Schmid,et al.  On a magnetoelectric classification of materials , 1973 .

[114]  G. Giovannetti,et al.  Electronic correlations decimate the ferroelectric polarization of multiferroic homn2o5. , 2008, Physical review letters.

[115]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.