Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator

Based on the theory of gearing and differential geometry, a universal hypoid generator mathematical model for face hobbing spiral bevel and hypoid gears has been developed. This model can be used to simulate existing face hobbing processes, such as Oerlikon 's Spimflex© and Spirac© methods, Klingelnberg's Cyclo-Palloid© cutting system, and Gleason's face hobbing nongenerated and generated cutting systems. The proposed model is divided into three modules: the cutter head, the imaginary generating gear, and the relative motion between the imaginary generating gear and the work gear. With such a modular arrangement, the model is suitable for development of object-oriented programming (OOP) code. In addition, it can be easily simplified to simulate face milling cutting and includes most existing flank modification features. A numerical example for simulation of the Klingelnberg Cyclo-Palloid© hypoid is presented to validate the proposed model, which can be used as a basis for developing a universal cutting simulation OOP engine for both face milling and face hobbing spiral bevel and hypoid gears.