Exponential Convergence to Equilibrium for the Homogeneous Boltzmann Equation for Hard Potentials Without Cut-Off
暂无分享,去创建一个
[1] Cl'ement Mouhot,et al. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials , 2005, math/0607532.
[2] T. Goudon. On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .
[3] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[4] A. Bobylev,et al. Moment inequalities for the boltzmann equation and applications to spatially homogeneous problems , 1997 .
[5] S. Mischler,et al. Spectral analysis of semigroups and growth-fragmentation equations , 2013, 1310.7773.
[6] Radjesvarane Alexandre,et al. Entropy Dissipation and Long-Range Interactions , 2000 .
[7] Isabelle Tristani,et al. Fractional Fokker-Planck equation , 2013, 1312.1652.
[8] Stéphane Mischler,et al. On the spatially homogeneous Boltzmann equation , 1999 .
[9] G. B.. The Dynamical Theory of Gases , 1916, Nature.
[10] Bernt Wennberg,et al. The Povzner inequality and moments in the Boltzmann equation , 1996 .
[11] Cédric Villani,et al. Cercignani's Conjecture is Sometimes True and Always Almost True , 2003 .
[12] B. Wennberg. Entropy dissipation and moment production for the Boltzmann equation , 1997 .
[13] Young-Ping Pao,et al. Boltzmann collision operator with inverse-power intermolecular potentials , 2011 .
[14] C. Mouhot,et al. Quantitative Lower Bounds for the Full Boltzmann Equation, Part I: Periodic Boundary Conditions , 2005, math/0607541.
[15] T. Carleman,et al. Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .
[16] Cl'ement Mouhot,et al. Explicit Coercivity Estimates for the Linearized Boltzmann and Landau Operators , 2006, math/0607538.
[17] Irene M. Gamba,et al. Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions , 2004 .
[18] Tosio Kato. Perturbation theory for linear operators , 1966 .
[19] Eric A. Carlen,et al. Entropy production estimates for Boltzmann equations with physically realistic collision kernels , 1994 .
[20] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[21] T. Elmroth. Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range , 1983 .
[22] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[23] Laurent Desvillettes,et al. Some applications of the method of moments for the homogeneous Boltzmann and Kac equations , 1993 .
[24] N. Fournier. Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition , 2012, 1203.0130.
[25] Cl'ement Mouhot,et al. Stability, Convergence to Self-Similarity and Elastic Limit for the Boltzmann Equation for Inelastic Hard Spheres , 2007, math/0701449.
[26] Cl'ement Mouhot. Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials , 2006 .
[27] Maria Pia Gualdani,et al. Factorization for non-symmetric operators and exponential H-theorem , 2010, 1006.5523.
[28] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[29] Philip T. Gressman,et al. Global classical solutions of the Boltzmann equation without angular cut-off , 2009, 0912.0888.
[30] Stability and Uniqueness for the Spatially Homogeneous Boltzmann Equation with Long-Range Interactions , 2006, math/0606307.
[31] Eric A. Carlen,et al. Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation , 1992 .
[32] Bernt Wennberg,et al. A maxwellian lower bound for solutions to the Boltzmann equation , 1997 .
[33] Cédric Villani,et al. On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .
[34] Giuseppe Toscani,et al. Sharp Entropy Dissipation Bounds and Explicit Rate of Trend to Equilibrium for the Spatially Homogeneous Boltzmann Equation , 1999 .
[35] Lingbing He,et al. Smoothing Estimates for Boltzmann Equation with Full-Range Interactions: Spatially Homogeneous Case , 2011 .
[36] V. Bally,et al. Regularization properties of the 2D homogeneous Boltzmann equation without cutoff , 2009, 0911.2614.
[37] Cl'ement Mouhot,et al. Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff , 2006, math/0607495.
[38] R. Illner,et al. The mathematical theory of dilute gases , 1994 .
[39] C. Mouhot,et al. On the Well-Posedness of the Spatially Homogeneous Boltzmann Equation with a Moderate Angular Singularity , 2007, math/0703283.