Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map
暂无分享,去创建一个
S. Wiggins | M. Katsanikas | A. Ngapasare | Sebastian Zimper | M. Hillebrand | C. Skokos | S. Zimper
[1] J. Daquin,et al. Detection of separatrices and chaotic seas based on orbit amplitudes , 2022, Celestial Mechanics and Dynamical Astronomy.
[2] S. Wiggins,et al. A new type of dynamical matching in an asymmetric Caldera potential energy surface , 2022, Chemical Physics Letters.
[3] S. Wiggins,et al. Quantifying chaos using Lagrangian descriptors. , 2022, Chaos.
[4] A. Mancho,et al. Global Dynamics Visualisation from Lagrangian Descriptors. Applications to Discrete and Continuous Systems , 2022, SSRN Electronic Journal.
[5] L. Kadem,et al. Extracting Lagrangian coherent structures in cardiovascular flows using Lagrangian descriptors , 2021, Physics of Fluids.
[6] Florentino Borondo,et al. Lagrangian descriptors and regular motion , 2021, Commun. Nonlinear Sci. Numer. Simul..
[7] V. J. García-Garrido,et al. Visualizing the phase space of the HeI2 van der Waals complex using Lagrangian descriptors , 2021, Commun. Nonlinear Sci. Numer. Simul..
[8] Víctor J. García-Garrido,et al. Lagrangian Descriptors: Discovery and Quantification of Phase Space Structure and Transport , 2020 .
[9] V. J. García-Garrido,et al. Phase space analysis of the dynamics on a potential energy surface with an entrance channel and two potential wells. , 2020, Physical review. E.
[10] R. M. Benito,et al. Unveiling the chaotic structure in phase space of molecular systems using Lagrangian descriptors. , 2019, Physical review. E.
[11] Stephen Wiggins,et al. Lagrangian study of the final warming in the southern stratosphere during 2002: Part I. The vortex splitting at upper levels , 2018, Climate Dynamics.
[12] Stephen Wiggins,et al. Detection of Periodic Orbits in Hamiltonian Systems Using Lagrangian Descriptors , 2017, Int. J. Bifurc. Chaos.
[13] R. Hernandez,et al. Lagrangian descriptors of driven chemical reaction manifolds. , 2017, Physical review. E.
[14] Stephen Wiggins,et al. A Theoretical Framework for Lagrangian Descriptors , 2017, Int. J. Bifurc. Chaos.
[15] Carlos Lopesino,et al. Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems , 2016, Int. J. Bifurc. Chaos.
[16] Stephen Wiggins,et al. Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps , 2015, Commun. Nonlinear Sci. Numer. Simul..
[17] R. Hernandez,et al. Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces. , 2015, Physical review letters.
[18] T. Manos,et al. The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection , 2014, 1412.7401.
[19] D. D. Carpintero,et al. Models of cuspy triaxial stellar systems - III. The effect of velocity anisotropy on chaoticity , 2013, 1312.3180.
[20] P. Kevrekidis,et al. Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate. , 2013, Chaos.
[21] M. Richter,et al. Visualization and comparison of classical structures and quantum states of four-dimensional maps. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Ch. Skokos,et al. Interplay between chaotic and regular motion in a time-dependent barred galaxy model , 2012, 1208.3551.
[23] Matthaios Katsanikas,et al. The Structure of phase Space Close to Fixed Points in a 4D symplectic Map , 2012, Int. J. Bifurc. Chaos.
[24] Timoteo Carletti,et al. Hamiltonian control used to improve the beam stability in particle accelerator models , 2012 .
[25] Matthaios Katsanikas,et al. Instabilities and Stickiness in a 3D rotating Galactic potential , 2012, Int. J. Bifurc. Chaos.
[26] Stephen Wiggins,et al. Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems , 2011, Commun. Nonlinear Sci. Numer. Simul..
[27] P. Stránský,et al. Quantum chaos in the nuclear collective model: Classical-quantum correspondence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Charalampos Skokos,et al. The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.
[29] Michael N. Vrahatis,et al. Evolutionary Methods for the Approximation of the Stability Domain and Frequency Optimization of Conservative Maps , 2008, Int. J. Bifurc. Chaos.
[30] A M Mancho,et al. Distinguished trajectories in time dependent vector fields. , 2008, Chaos.
[31] Roberto Barrio,et al. Sensitivity tools vs. Poincaré sections , 2005 .
[32] Ch. Skokos,et al. Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .
[33] P. M. Cincotta,et al. Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .
[34] J. A. Walker,et al. The general problem of the stability of motion , 1994 .
[35] Holger Kantz,et al. Internal Arnold diffusion and chaos thresholds in coupled symplectic maps , 1988 .
[36] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[37] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .
[38] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[39] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[40] L. M. Saha,et al. Chaotic Evaluations in a Modified Coupled Logistic Type Predator-Prey Model , 2012 .
[41] E. Lega,et al. FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .
[42] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[43] Ch. Skokos,et al. Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .