Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map

[1]  J. Daquin,et al.  Detection of separatrices and chaotic seas based on orbit amplitudes , 2022, Celestial Mechanics and Dynamical Astronomy.

[2]  S. Wiggins,et al.  A new type of dynamical matching in an asymmetric Caldera potential energy surface , 2022, Chemical Physics Letters.

[3]  S. Wiggins,et al.  Quantifying chaos using Lagrangian descriptors. , 2022, Chaos.

[4]  A. Mancho,et al.  Global Dynamics Visualisation from Lagrangian Descriptors. Applications to Discrete and Continuous Systems , 2022, SSRN Electronic Journal.

[5]  L. Kadem,et al.  Extracting Lagrangian coherent structures in cardiovascular flows using Lagrangian descriptors , 2021, Physics of Fluids.

[6]  Florentino Borondo,et al.  Lagrangian descriptors and regular motion , 2021, Commun. Nonlinear Sci. Numer. Simul..

[7]  V. J. García-Garrido,et al.  Visualizing the phase space of the HeI2 van der Waals complex using Lagrangian descriptors , 2021, Commun. Nonlinear Sci. Numer. Simul..

[8]  Víctor J. García-Garrido,et al.  Lagrangian Descriptors: Discovery and Quantification of Phase Space Structure and Transport , 2020 .

[9]  V. J. García-Garrido,et al.  Phase space analysis of the dynamics on a potential energy surface with an entrance channel and two potential wells. , 2020, Physical review. E.

[10]  R. M. Benito,et al.  Unveiling the chaotic structure in phase space of molecular systems using Lagrangian descriptors. , 2019, Physical review. E.

[11]  Stephen Wiggins,et al.  Lagrangian study of the final warming in the southern stratosphere during 2002: Part I. The vortex splitting at upper levels , 2018, Climate Dynamics.

[12]  Stephen Wiggins,et al.  Detection of Periodic Orbits in Hamiltonian Systems Using Lagrangian Descriptors , 2017, Int. J. Bifurc. Chaos.

[13]  R. Hernandez,et al.  Lagrangian descriptors of driven chemical reaction manifolds. , 2017, Physical review. E.

[14]  Stephen Wiggins,et al.  A Theoretical Framework for Lagrangian Descriptors , 2017, Int. J. Bifurc. Chaos.

[15]  Carlos Lopesino,et al.  Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems , 2016, Int. J. Bifurc. Chaos.

[16]  Stephen Wiggins,et al.  Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps , 2015, Commun. Nonlinear Sci. Numer. Simul..

[17]  R. Hernandez,et al.  Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces. , 2015, Physical review letters.

[18]  T. Manos,et al.  The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection , 2014, 1412.7401.

[19]  D. D. Carpintero,et al.  Models of cuspy triaxial stellar systems - III. The effect of velocity anisotropy on chaoticity , 2013, 1312.3180.

[20]  P. Kevrekidis,et al.  Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate. , 2013, Chaos.

[21]  M. Richter,et al.  Visualization and comparison of classical structures and quantum states of four-dimensional maps. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Ch. Skokos,et al.  Interplay between chaotic and regular motion in a time-dependent barred galaxy model , 2012, 1208.3551.

[23]  Matthaios Katsanikas,et al.  The Structure of phase Space Close to Fixed Points in a 4D symplectic Map , 2012, Int. J. Bifurc. Chaos.

[24]  Timoteo Carletti,et al.  Hamiltonian control used to improve the beam stability in particle accelerator models , 2012 .

[25]  Matthaios Katsanikas,et al.  Instabilities and Stickiness in a 3D rotating Galactic potential , 2012, Int. J. Bifurc. Chaos.

[26]  Stephen Wiggins,et al.  Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems , 2011, Commun. Nonlinear Sci. Numer. Simul..

[27]  P. Stránský,et al.  Quantum chaos in the nuclear collective model: Classical-quantum correspondence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[29]  Michael N. Vrahatis,et al.  Evolutionary Methods for the Approximation of the Stability Domain and Frequency Optimization of Conservative Maps , 2008, Int. J. Bifurc. Chaos.

[30]  A M Mancho,et al.  Distinguished trajectories in time dependent vector fields. , 2008, Chaos.

[31]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[32]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[33]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[34]  J. A. Walker,et al.  The general problem of the stability of motion , 1994 .

[35]  Holger Kantz,et al.  Internal Arnold diffusion and chaos thresholds in coupled symplectic maps , 1988 .

[36]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[37]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[38]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[39]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[40]  L. M. Saha,et al.  Chaotic Evaluations in a Modified Coupled Logistic Type Predator-Prey Model , 2012 .

[41]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[42]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[43]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .