Robust, Real-Time, Dense and Deformable 3D Organ Tracking in Laparoscopic Videos

An open problem in computer-assisted surgery is to robustly track soft-tissue 3D organ models in laparoscopic videos in real-time and over long durations. Previous real-time approaches use locally-tracked features such as SIFT or SURF to drive the process, usually with KLT tracking. However this is not robust and breaks down with occlusions, blur, specularities, rapid motion and poor texture. We have developed a fundamentally different framework that can deal with most of the above challenges and in real-time. This works by densely matching tissue texture at the pixel level, without requiring feature detection or matching. It naturally handles texture distortion caused by deformation and/or viewpoint change, does not cause drift, is robust to occlusions from tools and other structures, and handles blurred frames. It also integrates robust boundary contour matching, which provides tracking constraints at the organ’s boundaries. We show that it can track over long durations and can handles challenging cases that were previously unsolvable.

[1]  S. Cotin,et al.  Monocular 3D Reconstruction and Augmentation of Elastic Surfaces with Self-Occlusion Handling , 2015, IEEE Transactions on Visualization and Computer Graphics.

[2]  Daniel Pizarro-Perez,et al.  Computer-Assisted Laparoscopic myomectomy by augmenting the uterus with pre-operative MRI data , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[3]  Jeffrey A. Cadeddu,et al.  Toward Long-Term and Accurate Augmented-Reality for Monocular Endoscopic Videos , 2014, IEEE Transactions on Biomedical Engineering.

[4]  Adrien Bartoli,et al.  Realtime Shape-from-Template: System and Applications. , 2015, ISMAR 2015.

[5]  Gian Luca Mariottini,et al.  A Fast and Accurate Feature-Matching Algorithm for Minimally-Invasive Endoscopic Images , 2013, IEEE Transactions on Medical Imaging.

[6]  Nazim Haouchine,et al.  Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[7]  Adrien Bartoli,et al.  [POSTER] Realtime Shape-from-Template: System and Applications , 2015, 2015 IEEE International Symposium on Mixed and Augmented Reality.

[8]  Russell H. Taylor,et al.  Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. , 2009, Urology.

[9]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A Sarvazyan,et al.  Soft tissue elastometer. , 2008, Medical engineering & physics.