Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test.

[1]  John A. Clark,et al.  Automated test‐data generation for exception conditions , 2000, Softw. Pract. Exp..

[2]  Alfred V. Aho,et al.  An optimization technique for protocol conformance test generation based on UIO sequences and rural Chinese postman tours , 1991, IEEE Trans. Commun..

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[5]  Robert M. Hierons,et al.  UIO sequence based checking sequences for distributed test architectures , 2003, Inf. Softw. Technol..

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Deepinder P. Sidhu,et al.  Formal Methods for Protocol Testing: A Detailed Study , 1989, IEEE Trans. Software Eng..

[8]  Irith Pomeranz,et al.  Functional test generation for full scan circuits , 2000, DATE '00.

[9]  Bo Yang,et al.  Protocol conformance test generation using multiple UIO sequences with overlapping , 1990, SIGCOMM '90.

[10]  Prabhas Chongstitvatana,et al.  An improved genetic algorithm for the inference of finite state machine , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[11]  Sagar Naik,et al.  Efficient computation of unique input/output sequences in finite-state machines , 1997, TNET.

[12]  Bryan F. Jones,et al.  A Strategy for Using Genetic Algorithms to Automate Branch and Fault-Based Testing , 1998, Comput. J..

[13]  Fabrizio Lombardi,et al.  Protocol conformance testing using multiple UIO sequences , 1989, IEEE Trans. Commun..

[14]  A. Atkinson A segmented algorithm for simulated annealing , 1992 .

[15]  Chung-Ming Huang,et al.  UIOE: protocol test sequence generation method using the transition executability analysis (TEA) , 1998, Comput. Commun..

[16]  Joachim Wegener,et al.  Testing real-time systems using genetic algorithms , 1997, Software Quality Journal.

[17]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[18]  Sanjoy Paul,et al.  On the generation of minimal-length conformance tests for communication protocols , 1993, TNET.

[19]  David Lee,et al.  Principles and methods of testing finite state machines-a survey , 1996, Proc. IEEE.

[20]  Robert M. Hierons,et al.  Extending Test Sequence Overlap by Invertibility , 1996, Comput. J..

[21]  Gary McGraw,et al.  Generating Software Test Data by Evolution , 2001, IEEE Trans. Software Eng..

[22]  Mark Harman,et al.  Computing Unique Input/Output Sequences Using Genetic Algorithms , 2003, FATES.

[23]  Alei Liang,et al.  Study on UIO sequence generation for sequential machine's functional test , 2001, ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No.01TH8549).

[24]  Yun Li,et al.  Segmented Simulated Annealing Applied to Sliding Mode Controller Design , 1996 .

[25]  David Lee,et al.  Testing Finite-State Machines: State Identification and Verification , 1994, IEEE Trans. Computers.

[26]  Robert M. Hierons,et al.  Testing from a Finite-State Machine: Extending Invertibility to Sequences , 1997, Comput. J..

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .