Automated Solution of Partial Differential Equations with Discontinuities using the Partition of Unity Method

Although computers were invented to automate tedious and error-prone tasks, computer programming is a tedious and error-prone task itself. This is a well-known paradox in the field of computational mathematical modelling. Recently, automatic code generation has been proposed to solve this paradox. In this approach, a required code to model physical problems is generated by compiling an input file which mimics mathematical notations. In this thesis, the automatic code generation has been extended to support developing models for problems with discontinuities. Examples of this kind of problems in real world are cracks, slip planes and singularities in materials as well as phase interfaces in multiphase flows. This framework is designed in the context of the FEniCS project, an open source project in the Automation of Computational Mathematical Modelling (ACMM). The automated framework has been implemented in two packages which are licensed as open source software and they can be downloaded for free. - A compiler (in Python) for generating C++ low-level code to model discontinuities from the high-level code close to mathematical notations https://launchpad.net/ffc-pum - A solver library (in C++) to use the generated code from the PUM compiler in combination with other reusable components of DOLFIN to model discontinuities https://launchpad.net/dolfin-pum This framework provides required tools and functionalities to fast and efficient development of the partition of unity models for physical problems represented by partial differential equations in domains with discontinuity surfaces. Developing such models especially for coupled problems, in which different combinations of continuous/discontinuous spaces may exist, is a time consuming and difficult task. Using the automated framework moves the focus from implementation to modeling. Therefore, different models can be simulated and tested quickly with minimum reworks. The examples, presented in this thesis, were limited to non-branching discontinuity surfaces with the Heaviside enrichment function. A novel algorithm is also proposed to keep track of three-dimensional propagating surfaces. However, the solver library is designed such that it can be relatively easily extended to support other types of problems.

[1]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[2]  Garth N. Wells,et al.  Automated Modelling of Evolving Discontinuities , 2009, Algorithms.

[3]  Kent-Andre Mardal,et al.  Instant: just-in-time compilation of C/C++ in Python , 2012 .

[4]  Hamouine Abdelmadjid,et al.  A state-of-the-art review of the X-FEM for computational fracture mechanics , 2009 .

[5]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[6]  I. Babuska,et al.  The generalized finite element method , 2001 .

[7]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[8]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[9]  Anthony R. Ingraffea,et al.  Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications , 1988 .

[10]  Bert Sluys,et al.  Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces , 2000 .

[11]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[12]  H. Riesch-Oppermann,et al.  Automatic finite element meshing of planar Voronoi tessellations , 2002 .

[13]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[14]  Garth N. Wells,et al.  Modeling evolving discontinuities , 2012 .

[15]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[16]  Garth N. Wells,et al.  Quadrature representation of finite element variational forms , 2012 .

[17]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[18]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[19]  Anders Logg,et al.  UFC: a Finite Element Code Generation Interface , 2012 .

[20]  M. Klisinski,et al.  FINITE ELEMENT WITH INNER SOFTENING BAND , 1991 .

[21]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[22]  Bořek Patzák,et al.  Object-oriented programming and the extended finite-element method , 2010 .

[23]  Wolfgang A. Wall,et al.  Enhancement of fixed‐grid methods towards complex fluid–structure interaction applications , 2008 .

[24]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[25]  Xiaodong Sheldon Wang Fundamentals of Fluid-Solid Interactions: Analytical and Computational Approaches , 2008 .

[26]  Anders Logg,et al.  Efficient representation of computational meshes , 2009, Int. J. Comput. Sci. Eng..

[27]  Gerhard A. Holzapfel,et al.  Modeling 3D crack propagation in unreinforced concrete using PUFEM , 2005 .

[28]  Garth N. Wells,et al.  Optimizations for quadrature representations of finite element tensors through automated code generation , 2011, TOMS.

[29]  Kevin R. Long,et al.  Unified Embedded Parallel Finite Element Computations via Software-Based Fr[e-acute]chet Differentiation , 2010, SIAM J. Sci. Comput..

[30]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[31]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[32]  J. N. Reddy,et al.  Applied Functional Analysis and Variational Methods in Engineering , 1986 .

[33]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[34]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[35]  B. M. A. Rahman,et al.  Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .

[36]  Anders Logg,et al.  FFC: the FEniCS Form Compiler , 2012 .

[37]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[38]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[39]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[40]  A. Balakrishnan Applied Functional Analysis , 1976 .

[41]  Paul Steinmann,et al.  On local tracking algorithms for the simulation of three-dimensional discontinuities , 2008 .

[42]  Paul Steinmann,et al.  Modeling three‐dimensional crack propagation—A comparison of crack path tracking strategies , 2008 .

[43]  L. J. Sluys,et al.  Discontinuous failure analysis for mode-I and mode-II localization problems , 1998 .

[44]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[45]  Matthew G. Knepley,et al.  Optimizing the Evaluation of Finite Element Matrices , 2005, SIAM J. Sci. Comput..

[46]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[47]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[48]  K. Runesson,et al.  Embedded localization band in undrained soil based on regularized strong discontinuity theory and FE-analysis , 1996 .

[49]  Wolfgang A. Wall,et al.  Interface handling for three‐dimensional higher‐order XFEM‐computations in fluid–structure interaction , 2009 .

[50]  Albert C. J. Luo,et al.  Monograph series on nonlinear science and complexity , 2006 .

[51]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[52]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .

[53]  Anders Logg,et al.  A compiler for variational forms , 2006, TOMS.

[54]  P. Benson Shing,et al.  Embedded representation of fracture in concrete with mixed finite elements , 1995 .

[55]  Anders Logg,et al.  Unified framework for finite element assembly , 2009, Int. J. Comput. Sci. Eng..

[56]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[57]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[58]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[59]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[60]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[61]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[62]  R. Scanlan,et al.  Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks , 1991 .

[63]  Xing Cai,et al.  Past and Future Perspectives on Scientific Software , 2010, Simula Research Laboratory.

[64]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[65]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[66]  Robert C. Kirby,et al.  Geometric Optimization of the Evaluation of Finite Element Matrices , 2007, SIAM J. Sci. Comput..

[67]  Francisco Armero,et al.  An analysis of strong discontinuities in a saturated poro-plastic solid , 1999 .

[68]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[69]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[70]  Garth N. Wells,et al.  Applications in solid mechanics , 2012 .

[71]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[72]  Robert C. Kirby,et al.  FIAT: numerical construction of finite element basis functions , 2012 .

[73]  Anders Logg,et al.  Benchmarking Domain-Specific Compiler Optimizations for Variational Forms , 2008, TOMS.

[74]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[75]  Andrew P. Kuprat,et al.  Modeling microstructure evolution in three dimensions with Grain3D and LaGriT , 2003 .

[76]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[77]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[78]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[79]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[80]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[81]  Alain Bossavit,et al.  Simplicial finite elements for scattering problems in electromagnetism , 1989 .

[82]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[83]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[84]  D. Benson,et al.  An extended finite element formulation for contact in multi‐material arbitrary Lagrangian–Eulerian calculations , 2006 .

[85]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[86]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[87]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[88]  David J. Benson,et al.  Kinetic friction for multi-material arbitrary Lagrangian Eulerian extended finite element formulations , 2009 .

[89]  T. Baker,et al.  Brittle fracture in polycrystalline microstructures with the extended finite element method , 2003 .

[90]  Andy R. Terrel,et al.  Finite elements for incompressible fluids , 2012 .

[91]  R. Larsson,et al.  Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium , 2000 .

[92]  P. Wriggers Computational contact mechanics , 2012 .

[93]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[94]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[95]  L. J. Sluys,et al.  Three-dimensional embedded discontinuity model for brittle fracture , 2001 .

[96]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[97]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[98]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[99]  A. Ingraffea,et al.  Numerical modeling of discrete crack propagation in reinforced and plain concrete , 1985 .

[100]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[101]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[102]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[103]  Jørgen Bach Andersen,et al.  Field behavior near a dielectric wedge , 1978 .

[104]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[105]  A. Reusken Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .

[106]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[107]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[108]  A. Ingraffea,et al.  COMPUTER SIMULATION OF ARBITRARY , COHESIVE CRACK PROPAGATION IN CONCRETE , 2003 .

[109]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[110]  Wing Kam Liu,et al.  The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members , 2008 .

[111]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[112]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[113]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[114]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[115]  Christophe Geuzaine,et al.  GetDP: a general environment for the treatment of discrete problems , 1997 .

[116]  B. J. Carter,et al.  A topology based system for simulating 3D crack growth in solid and shell structures , 2012 .

[117]  M. Duflot A study of the representation of cracks with level sets , 2007 .

[118]  Robert C. Kirby Optimizing FIAT with level 3 BLAS , 2006, TOMS.

[119]  Christophe Prud'homme Life: Overview of a Unified C++ Implementation of the Finite and Spectral Element Methods in 1D, 2D and 3D , 2006, PARA.

[120]  Yair Shapira,et al.  Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach , 2006 .

[121]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[122]  A. Khoei,et al.  Contact friction modeling with the extended finite element method (X-FEM) , 2006 .

[123]  Robert C. Kirby,et al.  Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.

[124]  J. Tinsley Oden,et al.  Applied functional analysis , 1996 .

[125]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[126]  Ronaldo I. Borja,et al.  Finite deformation formulation for embedded frictional crack with the extended finite element method , 2010 .

[127]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[128]  David R. Noble,et al.  Quadrature rules for triangular and tetrahedral elements with generalized functions , 2008 .

[129]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[130]  Kent-Andre Mardal,et al.  SyFi and SFC: symbolic finite elements and form compilation , 2012 .

[131]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[132]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[133]  E. Dvorkin,et al.  Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions , 1990 .

[134]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[135]  Anders Logg,et al.  Efficient compilation of a class of variational forms , 2007, TOMS.

[136]  E. Giessen,et al.  Modeling of crazing using a cohesive surface methodology , 2000 .

[137]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[138]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[139]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[141]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[142]  M. Rognes,et al.  Efficient Assembly of H(div) and H(curl) Conforming Finite Elements , 2012, 1205.3085.

[143]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[144]  M. Jirásek CONDITIONS OF UNIQUENESS FOR FINITE ELEMENTS WITH EMBEDDED CRACKS , 2000 .

[145]  T. D. Nguyen Discontinious Galerkin formulations for thin bending problems , 2008 .

[146]  Anders Logg,et al.  Automated Code Generation for Discontinuous Galerkin Methods , 2008, SIAM J. Sci. Comput..

[147]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[148]  Salomon Levy,et al.  Two-phase flow in complex systems , 1999 .

[149]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .