A Novel Real-Time Tracking Algorithm Using Spatio-Temporal Context and Color Histogram

Spatio-temporal context (STC) is one of the most important features in describing the motion in videos. STC-based tracking algorithm achieved good performance on real-time tracking. However, it is very difficult to perform precise tracking in complex situations like heavy occlusion, illumination changes, and pose variation. In this paper, we propose a real-time tracking method which is robust to target variation during tracking single-object. Experiments on some challenging sequences highlights a significant improvement of tracking accuracy over the state-of-the-art methods.

[1]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[2]  Ramakant Nevatia,et al.  Tracking multiple humans in crowded environment , 2004, CVPR 2004.

[3]  Jiri Matas,et al.  Online learning of robust object detectors during unstable tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[4]  Ramakant Nevatia,et al.  Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors , 2007, International Journal of Computer Vision.

[5]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[6]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Xuan Song,et al.  Vision-Based Multiple Interacting Targets Tracking via On-Line Supervised Learning , 2008, ECCV.

[8]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[9]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[10]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[11]  Stefan Duffner,et al.  PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects , 2013, ICCV.

[12]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[13]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.

[14]  Larry S. Davis,et al.  Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering , 2006, ECCV.

[15]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[17]  Dan Schonfeld,et al.  Real-Time Decentralized Articulated Motion Analysis and Object Tracking From Videos , 2007, IEEE Transactions on Image Processing.

[18]  Francesco Solera,et al.  Learning to Divide and Conquer for Online Multi-target Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[19]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[20]  Jiri Matas,et al.  Face-TLD: Tracking-Learning-Detection applied to faces , 2010, 2010 IEEE International Conference on Image Processing.

[21]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[23]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Ram Nevatia,et al.  Learning to associate: HybridBoosted multi-target tracker for crowded scene , 2009, CVPR.

[25]  Ramakant Nevatia,et al.  Robust Object Tracking by Hierarchical Association of Detection Responses , 2008, ECCV.

[26]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Hong Qiao,et al.  Online Appearance Model Learning and Generation for Adaptive Visual Tracking , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, CVPR.

[29]  Ramakant Nevatia,et al.  Multi-target tracking by on-line learned discriminative appearance models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[34]  Alexander S. Poznyak,et al.  Nonlinear adaptive trajectory tracking using dynamic neural networks , 1999, IEEE Trans. Neural Networks.

[35]  Pietro Perona,et al.  Fast Feature Pyramids for Object Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  David Suter,et al.  Adaptive Object Tracking Based on an Effective Appearance Filter , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Fan Yang,et al.  Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification , 2003, IEEE Trans. Neural Networks.

[39]  Philip H. S. Torr,et al.  Struck: Structured output tracking with kernels , 2011, ICCV.