Presburger Modal Logic Is PSPACE-Complete

We introduce a Presburger modal logic PML with regularity constraints and full Presburger constraints on the number of children that generalize graded modalities, also known as number restrictions in description logics. We show that PML satisfiability is only pspace-complete by designing a Ladner-like algorithm that can be turned into an analytic proof system. algorithm. This extends a well-known and non-trivial pspace upper bound for graded modal logic. Furthermore, we provide a detailed comparison with logics that contain Presburger constraints and that are dedicated to query XML documents. As an application, we show that satisfiability for Sheaves Logic SL is pspace-complete, improving significantly its best known upper bound.

[1]  Piero A. Bonatti,et al.  On the undecidability of logics with converse, nominals, recursion and counting , 2004, Artif. Intell..

[2]  Maarten Marx,et al.  XPath and Modal Logics of Finite DAG's , 2003, TABLEAUX.

[3]  Edith Hemaspaandra The Complexity of Poor Man's Logic , 2001, J. Log. Comput..

[4]  Maarten de Rijke,et al.  A Modal Perspective on Path Constraints , 2003, J. Log. Comput..

[5]  Thomas Schwentick,et al.  Counting in Trees for Free , 2004, ICALP.

[6]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[7]  Thomas Schwentick,et al.  On the Complexity of Equational Horn Clauses , 2005, CADE.

[8]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[9]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[10]  Maarten de Rijke,et al.  Counting Objects , 1995, J. Log. Comput..

[11]  Virginie Thion,et al.  A first step towardsmodeling semistructured data in hybrid multimodal logic , 2004, J. Appl. Non Class. Logics.

[12]  M. de Rijke,et al.  Counting objects in generalized quantifier theory, modal logic and knowledge representation , 1992 .

[13]  H PapadimitriouChristos On the complexity of integer programming , 1981 .

[14]  Angelo Montanari,et al.  A Set-Theoretic Approach to Automated Deduction in Graded Modal Logics , 1997, IJCAI.

[15]  Stephan Tobies PSPACE Reasoning for Graded Modal Logics , 2001, J. Log. Comput..

[16]  Wiebe van der Hoek On the Semantics of Graded Modalities , 1992, J. Appl. Non Class. Logics.

[17]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[18]  Maurizio Fattorosi-Barnaba,et al.  Graded modalities. I , 1985, Stud Logica.

[19]  Ian Horrocks,et al.  Reasoning with Individuals for the Description Logic SHIQ , 2000, CADE.

[20]  Denis Lugiez,et al.  XML schema, tree logic and sheaves automata , 2003, Applicable Algebra in Engineering, Communication and Computing.

[21]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[22]  Ullrich Hustadt,et al.  Translating graded modalities into predicate logic , 1996 .

[23]  Ulrike Sattler,et al.  The Complexity of the Graded µ-Calculus , 2002, CADE.

[24]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..

[25]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[26]  Stéphane Demri,et al.  A polynomial space construction of tree-like models for logics with local chains of modal connectives , 2003, Theor. Comput. Sci..

[27]  Edith Spaan The Complexity of Propositional Tense Logics , 1993 .

[28]  Claudio Cerrato Decidability by filtrations for graded normal logics (graded modalities V) , 1994, Stud Logica.

[29]  Jean-Marc Talbot,et al.  Automata and Logics for Unranked and Unordered Trees , 2005, RTA.

[30]  M. de Rijke,et al.  PDL for ordered trees , 2005, J. Appl. Non Class. Logics.

[31]  John-Jules Ch. Meyer,et al.  Graded Modalities in Epistemic Logic , 1992, LFCS.

[32]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[33]  Diego Calvanese,et al.  Expressive Description Logics , 2003, Description Logic Handbook.