Estimation in an Integer-Valued Autoregressive Process with Negative Binomial Marginals (NBINAR(1))
暂无分享,去创建一个
[1] Li Yuan,et al. THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .
[2] E. McKenzie,et al. Autoregressive moving-average processes with negative-binomial and geometric marginal distributions , 1986, Advances in Applied Probability.
[3] Harry Joe,et al. Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .
[4] Emad-Eldin A. A. Aly,et al. Stationary solutions for integer-valued autoregressive processes , 2005, Int. J. Math. Math. Sci..
[5] Dag Tjøstheim,et al. Consistent Estimates for the Near(2) and Nlar(2) Time Series Models , 1988 .
[6] Emad-Eldin A. A. Aly,et al. Explicit stationary distributions for some galton-watson processes with immigration , 1994 .
[7] H. Bakouch,et al. Zero truncated Poisson integer-valued AR(1) model , 2010 .
[8] Peter A. W. Lewis,et al. Discrete time series generated by mixtures III: Autoregressive processes (DAR(p)) , 1978 .
[9] Hassan S. Bakouch,et al. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .
[10] Peter A. W. Lewis,et al. Discrete Time Series Generated by Mixtures Ii: Asymptotic Properties , 1978 .
[11] Eddie McKenzie,et al. Discrete variate time series , 2003 .
[12] B. McCabe,et al. Asymptotic properties of CLS estimators in the Poisson AR(1) model , 2005 .
[13] A. Harvey. Time series models , 1983 .
[14] Alain Latour,et al. Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process , 1998 .
[15] Harry Joe,et al. Negative binomial time series models based on expectation thinning operators , 2010 .
[16] Somnath Datta,et al. Inference for pth‐order random coefficient integer‐valued autoregressive processes , 2006 .
[17] Somnath Datta,et al. First-order random coefficient integer-valued autoregressive processes , 2007 .
[18] Isabel Silva,et al. Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes , 2006 .
[19] Harry Joe,et al. A New Type of Discrete Self-Decomposability and Its Application to Continuous-Time Markov Processes for Modeling Count Data Time Series , 2003 .
[20] Ed. McKenzie,et al. SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .
[21] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[22] Mohamed Alosh,et al. First order autoregressive time series with negative binomial and geometric marginals , 1992 .
[23] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[24] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[25] Peter A. W. Lewis,et al. Discrete Time Series Generated by Mixtures. I: Correlational and Runs Properties , 1978 .
[26] David R. Cox,et al. The Theory of Stochastic Processes , 1967, The Mathematical Gazette.
[27] Gerd Ronning,et al. Estimation in conditional first order autoregression with discrete support , 2005 .
[28] 文魚 長谷川. D.R. Cox and H.D. Miller: The Theory of Stochastic Processes, Methuen. London, 1965, 398頁, 24×16cm, 4,200円. , 1966 .
[29] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[30] E. Mckenzie. Innovation distributions for gamma and negative binomial autoregressions , 1987 .
[31] A. Alzaid,et al. Some autoregressive moving average processes with generalized Poisson marginal distributions , 1993 .
[32] Mohamed Alosh,et al. First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .