Comparison of least-squares and stochastic gradient lattice predictor algorithms using two performance criteria
暂无分享,去创建一个
[1] G. Ungerboeck. Theory on the speed of convergence in adaptive equalizers for digital communication , 1972 .
[2] B. Friedlander,et al. Lattice filters for adaptive processing , 1982, Proceedings of the IEEE.
[3] M. S. Mueller. On the rapid initial convergence of least-squares equalizer adjustment algorithms , 1981, The Bell System Technical Journal.
[4] E. Satorius,et al. Application of Least Squares Lattice Algorithms to Adaptive Equalization , 1981, IEEE Trans. Commun..
[5] L. Griffiths. A continuously-adaptive filter implemented as a lattice structure , 1977 .
[6] M. Lagunas-Hernandez. Use of the most significant autocorrelation lags in iterative ME spectral estimation , 1984 .
[7] Lloyd J. Griffiths,et al. A comparison of two fast linear predictors , 1981, ICASSP.
[8] David G. Messerschmitt,et al. Convergence properties of an adaptive digital lattice filter , 1980, ICASSP.
[9] A. Cantoni,et al. Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .
[10] S. Morgera. On the reducibility of finite Toeplitz matrices - applications in speech analysis and pattern recognition , 1982 .
[11] D.G. Dudley,et al. Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.