ENERGY AND GREENHOUSE GAS EMISSION ACCOUNTING FRAMEWORK FOR GROUNDWATER USE IN AGRICULTURE

Changes in energy subsidies for Indian agriculture and the introduction of a carbon tax in Australia have the potential to impact on energy use practices in groundwater-irrigated agriculture in both countries. A general framework for the accounting of life cycle greenhouse gas emissions and life cycle energy consumption from groundwater-irrigated agriculture was developed using life cycle and supply chain analyses to examine the contributing aspects of groundwater irrigation to total associated greenhouse gas emissions and energy use. The framework then formed the basis of a greenhouse gas emission and energy accounting model that was simulated for the groundwater- dependent agricultural areas of the Musi catchment in India and the south-east region of South Australia. The region in South Australia was found to be emitting around twice the greenhouse gas of the Indian region per unit volume of water delivered, while emissions associated with operating electricity powered water pumps contributed more than 99.8% of modelled emissions in the south-east of South Australia and over 99.1% of emissions in the Musi catchment. Diesel powered water pump irrigation systems emitted the least total amount of greenhouse gas emissions per unit volume of water supplied, compared to grid electricity and diesel generator powered submersible water pump options. Copyright © 2012 John Wiley & Sons, Ltd. RESUME Les changements dans les subventions energetiques pour l'agriculture indienne et l'introduction d'une taxe carbone en Australie peuvent potentiellement impacter les pratiques d'utilisation de l'energie pour l'agriculture irriguee a partir des eaux souterraines, ceci dans les deux pays. Nous avons developpe un cadre general pour comptabiliser le cycle de vie des gaz a effets de serre et le cycle de vie de la consommation energetique de l'agriculture irriguee par des eaux souterraines. Pour cela nous avons analyse les cycles de vie dans la filiere de l'irrigation par des eaux souterraines en faisant ressortir les aspects qui contribuent au total des emissions de gaz a effet de serre et de consommation energetique. Ce cadre a forme la base d'un modele de comptabilite d'emission de gaz a effet de serre et de consommation energetique qui a ete applique a deux zones agricoles dependant des nappes souterraines, a savoir le bassin versant de Musi en Inde et la region sud-est de l'Australie du Sud. La region en Australie du Sud a ete jugee emettant environ deux fois plus de gaz a effet de serre que la region indienne par unite de volume d'eau livre, alors que les emissions associees au fonctionnement des pompes electriques representent plus de 99.8% des emissions modelisees dans le cas australien, et plus 99.1% des emissions dans le cas indien. Les pompes a moteur diesel ont emis la plus faible quantite totale des emissions de gaz a effet de serre par unite de volume d'eau fournie que les pompes immergees alimentees par le reseau ou des generateurs diesel (dans cet ordre). Copyright © 2012 John Wiley & Sons, Ltd.

[1]  C. C. Sekhesa Development of a tool for estimating net emissions of greenhouse gases at farm and sub-catchment level , 2006 .

[2]  Biju George,et al.  Groundwater modeling for sustainable resource management in the Musi catchment, India , 2007 .

[3]  Guangnan Chen,et al.  DEVELOPMENT OF ENERGYCALC - A TOOL TO ASSESS COTTON ON-FARM ENERGY USES , 2007 .

[4]  Brian Davidson,et al.  An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development , 2011 .

[5]  A. Martínez,et al.  Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency , 2010, Irrigation Science.

[6]  M. Kumar,et al.  Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India , 2005 .

[7]  S. Rafiee,et al.  Modeling and sensitivity analysis of energy inputs for apple production in Iran , 2010 .

[8]  R. Robertson,et al.  Greenhouse gas mitigation: issues for Indian agriculture. , 2009 .

[9]  B. Walker,et al.  Rural Industries Research and Development Corporation , 2011 .

[10]  T. Shah,et al.  Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India , 2008 .

[11]  R. Bose,et al.  Electricity tariffs in India: an assessment of consumers’ ability and willingness to pay in Gujarat , 2001 .

[12]  Guangnan Chen,et al.  An assessment of greenhouse gas emissions from the Australian vegetables industry , 2010, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.

[13]  Shahbaz Mushtaq,et al.  Greenhouse gas emissions from rice farming inputs: a cross-country assessment , 2009, The Journal of Agricultural Science.

[14]  Guangnan Chen,et al.  LIFE CYCLE ASSESSMENT OF A REPRESENTATIVE DAIRY FARM WITH LIMITED IRRIGATION PASTURES , 2005 .

[15]  Armando Apan,et al.  A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia , 2007, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[16]  Guangnan Chen,et al.  Reducing energy input costs and associated greenhouse gas emissions in cotton , 2008 .

[17]  Lu Aye,et al.  Life cycle greenhouse gas emission of building and construction: an indicator for sustainability , 2007 .

[18]  C. Scott,et al.  Urban-agricultural water appropriation: The Hyderabad, India case , 2010 .

[19]  R. Lal,et al.  Carbon emission from farm operations. , 2004, Environment international.

[20]  Shahbaz Khan,et al.  Finding the balance: Comparing water, energy and emissions patterns for irrigation in surface and ground water dependent irrigation regions , 2010 .

[21]  Mohsin Hafeez,et al.  A comparative analysis of water application and energy consumption at the irrigated field level. , 2010 .

[22]  A. Aw-Hassan,et al.  Economic analysis of energy use in groundwater irrigation of dry areas: a case study in Syria , 2005 .

[23]  S. Gurunathan,et al.  Energy Use and its Efficiency in Tamil Nadu Agriculture: A Case Study of Different Groundwater Development Regions in Coimbatore District of Tamil Nadu , 2008 .

[24]  N. Nahar,et al.  Energy use pattern in production agriculture of a typical village in arid zone India: part II , 2002 .