An efficient hybrid algorithm to evolve an Awale player

The game of Awale is a member of the Mancala family. The problem of developing heuristics for playing Mancala games by a computer agent is an open issue. This study presents a heuristics that uses a hybrid combination of Minimax search and Aggregate Malanobis Distance Function (AMDF), to evolve a player that can play Awale. The evaluation of such an evolved player shows that this combination can result in an efficient heuristic.

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  H. Jaap van den Herik,et al.  Proof-Number Search , 1994, Artif. Intell..

[3]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[4]  K. Thompson,et al.  COMPUTER CHESS STRENGTH , 1982 .

[5]  Jack van Rijswijck,et al.  Learning from Perfection. A Data Mining Approach to Evaluation Function Learning in Awari , 2000, Computers and Games.

[6]  Jos W. H. M. Uiterwijk,et al.  Mancala Games -- Topics in Artificial Intelligence and Mathematics , 2002 .

[7]  Ali Haidar,et al.  Ayo, the Awari player, or how better representation trumps deeper search , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  Alan R. Washburn A New Kind of Fictitious Play , 2001 .

[9]  Wim Pijls,et al.  Game tree algorithms and solution trees , 1998, Theor. Comput. Sci..

[10]  Thomas R. Lincke,et al.  Strategies for the Automatic Construction of Opening Books , 2000, Computers and Games.

[11]  Henri E. Bal,et al.  Parallel Retrograde Analysis on a Distributed System , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[12]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[13]  Aske Plaat,et al.  Solution Trees as a Basis for Game-Tree Search , 1994, J. Int. Comput. Games Assoc..

[14]  Wim Pijls,et al.  Game tree algorithms and solution trees , 2001, Theor. Comput. Sci..

[15]  Scott Hamilton,et al.  Deep Blue's Hardware-Software Synergy , 1997, Computer.

[16]  M. Bacharach Two-person Cooperative Games , 1976 .

[17]  Wim Pijls,et al.  Trends in Game Tree Search , 1996, SOFSEM.

[18]  Thomas R. Lincke,et al.  Large Endgame Databases with Limited Memory Space , 2000, J. Int. Comput. Games Assoc..

[19]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[20]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[21]  J. O. A. Ayeni,et al.  Game people play: Ayo , 1985 .

[22]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[23]  Graham Kendall,et al.  An investigation, using co-evolution, to evolve an Awari player , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[24]  Adi Ben-Israel,et al.  PROBABILISTIC DISTANCE CLUSTERING ADJUSTED FOR CLUSTER SIZE , 2008, Probability in the Engineering and Informational Sciences.

[25]  Ken Thompson,et al.  Retrograde Analysis of Certain Endgames , 1986, J. Int. Comput. Games Assoc..

[26]  Ken Thompson,et al.  6-Piece Endgames , 1996, J. Int. Comput. Games Assoc..