Chain conditions of Products, and Weakly Compact Cardinals

The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\kappa > \aleph _1 {\rm{,}}$ the principle □( k ) is equivalent to the existence of a certain strong coloring $c\,:\,[k]^2 \, \to $ k for which the family of fibers ${\cal T}\left( c \right)$ is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\kappa > \aleph _1 {\rm{,}}$ then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.

[1]  Saharon Shelah Colouring and Non-Productivity of aleph2-C.C , 1997, Ann. Pure Appl. Log..

[2]  Assaf Rinot,et al.  The Ostaszewski square and homogeneous Souslin trees , 2011, 1105.2944.

[3]  Saharon Shelah,et al.  On the consistency of some partition theorems for continuous colorings, and the structure of aleph1-dense real order types , 1985, Ann. Pure Appl. Log..

[4]  Saharon Shelah,et al.  Martin’s axiom does not imply that every two ℕ1-dense sets of reals are isomorphic , 1981 .

[5]  Fred Galvin,et al.  Chain conditions and products , 1980 .

[6]  Saharon Shelah,et al.  Some Counterexamples in the Partition Calculus , 1973, J. Comb. Theory, Ser. A.

[7]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Malitz,et al.  Embedding trees in the rationals. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Stevo Todorcevic,et al.  Remarks on cellularity in products , 1986 .

[10]  B. Velickovic Forcing axioms and stationary sets , 1992 .

[11]  Stevo Todorcevic,et al.  Partitioning pairs of countable ordinals , 1987 .

[12]  Menachem Magidor,et al.  Reflecting stationary sets , 1982, Journal of Symbolic Logic.

[13]  Waclaw Sierpiński Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante , 1879 .

[14]  A REFORMULATION OF S AND L , 1978 .

[15]  Remarks on chain conditions in products , 1985 .

[16]  E. Marczewski Séparabilité et multiplication cartésienne des espaces topologiques , 1947 .

[17]  A. Tarski,et al.  On Families of Mutually Exclusive Sets , 1943 .

[18]  E. Specker,et al.  Sur un Problème de Sikorski , 1949 .

[19]  Saharon Shelah,et al.  Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions , 1988 .

[20]  A. Rinot Transforming rectangles into squares, with applications to strong colorings , 2011, 1103.2838.

[21]  Todd Eisworth Getting more colors I , 2013, J. Symb. Log..

[22]  W. G. Fleissner Some Spaces Related to Topological Inequalities Proven by the Erdös-Rado Theorem , 1978 .

[23]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[24]  James E. Baumgartner,et al.  Αll $ℵ_1$-dense sets of reals can be isomorphic , 1973 .

[25]  William Mitchell,et al.  Aronszajn trees and the independence of the transfer property , 1972 .

[26]  C. Alvarez On the History of Souslin's Problem , 1999 .

[27]  Saharon Shelah,et al.  Was sierpinski right? I , 1988 .

[28]  Todd Eisworth,et al.  Club-guessing, stationary reflection, and coloring theorems , 2009, Ann. Pure Appl. Log..

[29]  James E. Baumgartner,et al.  A new class of order types , 1976 .

[30]  Bernhard König,et al.  Bounding the consistency strength of a five element linear basis , 2008 .

[31]  Saharon Shelah,et al.  μ-complete Souslin trees on μ+ , 1993, Arch. Math. Log..

[32]  S. Shelah,et al.  The ℵ₂-Souslin hypothesis , 1981 .

[33]  Special square sequences , 1989 .

[34]  Saharon Shelah,et al.  Narrow boolean algebras , 1985, Ann. Pure Appl. Log..

[35]  A. Kanamori Set Theory, Arithmetic, and Foundations of Mathematics: Historical remarks on Suslin's problem , 2011 .

[36]  Stevo Todorcevic,et al.  Oscillations of Sets of Integers , 1998 .

[37]  Saharon Shelah,et al.  Strong negative partition relations below the continuum , 1991 .

[38]  Saharon Shelah,et al.  Jonsson algebras in successor cardinals , 1978 .

[39]  Justin Tatch Moore A five element basis for the uncountable linear orders , 2006 .

[40]  R. Jensen,et al.  The fine structure of the constructible hierarchy , 1972 .

[41]  Boban Velickovic,et al.  Jensen's ⃞ principles and the Novák number of partially ordered sets , 1986, Journal of Symbolic Logic.

[42]  A. Blass Weak partition relations , 1972 .

[43]  Saharon Shelah,et al.  Weakly compact cardinals and nonspecial Aronszajn trees , 1988 .

[44]  Jiang-Hua Lu,et al.  Progress in Mathematics , 2013 .

[45]  Saharon Shelah,et al.  Strong negative partition above the continuum , 1990, Journal of Symbolic Logic.