Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation.

[1]  Lei S. Qi Faculty of 1000 evaluation for Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. , 2017 .

[2]  Hendrik Dietz,et al.  Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes , 2017, Science.

[3]  C. Fan,et al.  DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection , 2017 .

[4]  Jing Zhu,et al.  A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery , 2016, Nature Communications.

[5]  T. Fujii,et al.  High-resolution mapping of bifurcations in nonlinear biochemical circuits. , 2016, Nature chemistry.

[6]  Hieu Bui,et al.  Analog Computation by DNA Strand Displacement Circuits. , 2016, ACS synthetic biology.

[7]  Clemens Mayer,et al.  An Epigenetics‐Inspired DNA‐Based Data Storage System , 2016, Angewandte Chemie.

[8]  Peng Yin,et al.  Genetic encoding of DNA nanostructures and their self-assembly in living bacteria , 2016, Nature Communications.

[9]  Christopher A. Voigt,et al.  Genetic circuit design automation , 2016, Science.

[10]  Bruce A. Shapiro,et al.  Multistrand Structure Prediction of Nucleic Acid Assemblies and Design of RNA Switches. , 2016, Nano letters.

[11]  Warren C. W. Chan,et al.  DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction , 2016, Science.

[12]  Hao Yan,et al.  Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion , 2016, Nature Communications.

[13]  Shuo Diao,et al.  A small-molecule dye for NIR-II imaging. , 2016, Nature materials.

[14]  Jennifer A. Doudna,et al.  Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering , 2016, Cell.

[15]  H. Sleiman,et al.  Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles , 2016, Nature Chemistry.

[16]  Leonid A. Mirny,et al.  Super-resolution imaging reveals distinct chromatin folding for different epigenetic states , 2015, Nature.

[17]  Georg Seelig,et al.  Computing in mammalian cells with nucleic acid strand exchange , 2015, Nature nanotechnology.

[18]  William M. Shih,et al.  Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries , 2015, Nature Communications.

[19]  Itamar Willner,et al.  Stimuli-responsive DNA-functionalized nano-/microcontainers for switchable and controlled release. , 2015, Angewandte Chemie.

[20]  Chao Wang,et al.  Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. , 2015, Angewandte Chemie.

[21]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[22]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[23]  Tim Liedl,et al.  One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. , 2015, Angewandte Chemie.

[24]  C. Niemeyer,et al.  Designed Intercalators for Modification of DNA Origami Surface Properties. , 2015, Chemistry.

[25]  S. Murata,et al.  Self-replication of DNA rings. , 2015, Nature nanotechnology.

[26]  E. Winfree,et al.  Increasing Redundancy Exponentially Reduces Error Rates during Algorithmic Self-Assembly. , 2015, ACS nano.

[27]  Ethan Bier,et al.  The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations , 2015, Science.

[28]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[29]  James Chappell,et al.  Creating small transcription activating RNAs. , 2015, Nature chemical biology.

[30]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[31]  Chunhai Fan,et al.  Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. , 2015, Angewandte Chemie.

[32]  I. Willner,et al.  Switchable catalytic DNA catenanes. , 2015, Nano letters.

[33]  Dick Yan Tam,et al.  Multifunctional DNA nanomaterials for biomedical applications , 2015 .

[34]  Cameron Myhrvold,et al.  Using synthetic RNAs as scaffolds and regulators , 2015, Nature Structural &Molecular Biology.

[35]  Robert Batey,et al.  Faculty Opinions recommendation of Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. , 2014 .

[36]  Z. Cai,et al.  Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells , 2014, Nature Communications.

[37]  James J. Collins,et al.  Paper-Based Synthetic Gene Networks , 2014, Cell.

[38]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[39]  T. Lu,et al.  Genomically encoded analog memory with precise in vivo DNA writing in living cell populations , 2014, Science.

[40]  Grigory S. Filonov,et al.  Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution , 2014, Journal of the American Chemical Society.

[41]  Zhen Gu,et al.  Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery , 2014, Journal of the American Chemical Society.

[42]  Julián Valero,et al.  Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. , 2014, Angewandte Chemie.

[43]  Michael Famulok,et al.  Interlocked DNA nanostructures controlled by a reversible logic circuit , 2014, Nature Communications.

[44]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[45]  Cody W. Geary,et al.  A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.

[46]  Jiye Shi,et al.  Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. , 2014, Angewandte Chemie.

[47]  Hao Yan,et al.  Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. , 2014, Nature nanotechnology.

[48]  Weihong Tan,et al.  DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. , 2014, Angewandte Chemie.

[49]  Luc Jaeger,et al.  RNA self-assembly and RNA nanotechnology. , 2014, Accounts of chemical research.

[50]  Wen Jiang,et al.  Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage , 2014, Nature Communications.

[51]  R. Weiss,et al.  CRISPR transcriptional repression devices and layered circuits in mammalian cells , 2014, Nature Methods.

[52]  G. Church,et al.  Large-scale de novo DNA synthesis: technologies and applications , 2014, Nature Methods.

[53]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[54]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[55]  Miu Shan Chan,et al.  Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. , 2014, Small.

[56]  Christopher A. Voigt,et al.  Realizing the potential of synthetic biology , 2014, Nature Reviews Molecular Cell Biology.

[57]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[58]  Lei Wang,et al.  Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos , 2014, Cell.

[59]  Jiye Shi,et al.  Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. , 2014, Analytical chemistry.

[60]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[61]  Luke A. Gilbert,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2013, Cell.

[62]  Weihong Tan,et al.  Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. , 2013, Journal of the American Chemical Society.

[63]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[64]  Cameron Myhrvold,et al.  Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. , 2013, Nano letters.

[65]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[66]  Anusuya Banerjee,et al.  Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. , 2013, Angewandte Chemie.

[67]  Byeong-Su Kim,et al.  Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. , 2013, Biomaterials.

[68]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[69]  Julius B. Lucks,et al.  A modular strategy for engineering orthogonal chimeric RNA transcription regulators , 2013, Nucleic acids research.

[70]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[71]  Rahul Sarpeshkar,et al.  Synthetic analog computation in living cells , 2013, Nature.

[72]  Drew Endy,et al.  Amplifying Genetic Logic Gates , 2013, Science.

[73]  Timothy K Lu,et al.  Synthetic circuits integrating logic and memory in living cells , 2013, Nature Biotechnology.

[74]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[75]  A. Turberfield,et al.  Non-covalent single transcription factor encapsulation inside a DNA cage. , 2013, Angewandte Chemie.

[76]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[77]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[78]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[79]  Ewan Birney,et al.  Towards practical, high-capacity, low-maintenance information storage in synthesized DNA , 2013, Nature.

[80]  Jie Chao,et al.  Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. , 2013, Journal of the American Chemical Society.

[81]  K. Polizzi What is synthetic biology? , 2013, Methods in molecular biology.

[82]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[83]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[84]  G. Church,et al.  Next-Generation Digital Information Storage in DNA , 2012, Science.

[85]  Chunhai Fan,et al.  Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. , 2012, Angewandte Chemie.

[86]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[87]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[88]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[89]  Markus Wieland,et al.  Programmable single-cell mammalian biocomputers , 2012, Nature.

[90]  Y. Benenson Biomolecular computing systems: principles, progress and potential , 2012, Nature Reviews Genetics.

[91]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[92]  Adam P Arkin,et al.  Supplementary information for Rationally designed families of orthogonal RNA regulators of translation , 2012 .

[93]  Hans A. Heus,et al.  Fast production of homogeneous recombinant RNA—towards large-scale production of RNA , 2012, Nucleic acids research.

[94]  James J. Collins,et al.  Genetic switchboard for synthetic biology applications , 2012, Proceedings of the National Academy of Sciences.

[95]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[96]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[97]  Wenjiao Song,et al.  Fluorescence Imaging of Cellular Metabolites with RNA , 2012, Science.

[98]  Y. Mori,et al.  Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. , 2012, Angewandte Chemie.

[99]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[100]  Hanadi F Sleiman,et al.  Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. , 2012, Journal of the American Chemical Society.

[101]  Eric H Davidson,et al.  Synthetic in vivo validation of gene network circuitry , 2012, Proceedings of the National Academy of Sciences.

[102]  Chad A Mirkin,et al.  Spherical nucleic acids. , 2012, Journal of the American Chemical Society.

[103]  Jonathan Bath,et al.  Reversible logic circuits made of DNA. , 2011, Journal of the American Chemical Society.

[104]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[105]  Hao Yan,et al.  DNA directed self-assembly of anisotropic plasmonic nanostructures. , 2011, Journal of the American Chemical Society.

[106]  Andrew Phillips,et al.  Localized Hybridization Circuits , 2011, DNA.

[107]  Michael Famulok,et al.  Aptamers for allosteric regulation. , 2011, Nature chemical biology.

[108]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[109]  Faisal A. Aldaye,et al.  Organization of Intracellular Reactions with Rationally Designed RNA Assemblies , 2011, Science.

[110]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[111]  Hao Yan,et al.  Organizing DNA origami tiles into larger structures using preformed scaffold frames. , 2011, Nano letters.

[112]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[113]  Sandhya P Koushika,et al.  A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. , 2011, Nature communications.

[114]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[115]  Adam P Arkin,et al.  Versatile RNA-sensing transcriptional regulators for engineering genetic networks , 2011, Proceedings of the National Academy of Sciences.

[116]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[117]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[118]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[119]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[120]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[121]  E. Winfree,et al.  A simple DNA gate motif for synthesizing large-scale circuits , 2009, Journal of The Royal Society Interface.

[122]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[123]  Le A. Trinh,et al.  Programmable in situ amplification for multiplexed imaging of mRNA expression , 2010, Nature Biotechnology.

[124]  Chunhai Fan,et al.  A DNA-Origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. , 2010, Small.

[125]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[126]  Martin Fussenegger,et al.  Self-sufficient control of urate homeostasis in mice by a synthetic circuit , 2010, Nature Biotechnology.

[127]  Emily M. LeProust,et al.  Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process , 2010, Nucleic acids research.

[128]  Xingguo Liang,et al.  A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. , 2010, Angewandte Chemie.

[129]  Erik Winfree,et al.  DNA as a universal substrate for chemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[130]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[131]  Y. Kikuchi,et al.  Extracellular Production of an RNA Aptamer by Ribonuclease-Free Marine Bacteria Harboring Engineered Plasmids: a Proposal for Industrial RNA Drug Production , 2009, Applied and Environmental Microbiology.

[132]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[133]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[134]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[135]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[136]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[137]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[138]  P. Tran,et al.  Opportunities for nanotechnology-enabled bioactive bone implants , 2009 .

[139]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[140]  Satoshi Murata,et al.  Error suppression mechanisms for DNA tile self-assembly and their simulation , 2009, Natural Computing.

[141]  Hao Yan,et al.  In vivo cloning of artificial DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[142]  C. Mirkin,et al.  Peptide antisense nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[143]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[144]  Itamar Willner,et al.  DNAzymes for sensing, nanobiotechnology and logic gate applications. , 2008, Chemical Society reviews.

[145]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[146]  Frédéric Dardel,et al.  Recombinant RNA technology: the tRNA scaffold , 2007, Nature Methods.

[147]  R. Weiss,et al.  A universal RNAi-based logic evaluator that operates in mammalian cells , 2007, Nature Biotechnology.

[148]  Lorian Schaeffer,et al.  A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. , 2007, Science.

[149]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[150]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[151]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[152]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[153]  Itamar Willner,et al.  Endonuclease-based logic gates and sensors using magnetic force-amplified readout of DNA scission on cantilevers. , 2005, Journal of the American Chemical Society.

[154]  J. Macdonald,et al.  Deoxyribozyme-based ligase logic gates and their initial circuits. , 2005, Journal of the American Chemical Society.

[155]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[156]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[158]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[159]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[160]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[161]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[162]  Lloyd M. Smith,et al.  DNA computing on surfaces , 2000, Nature.

[163]  Jules Moreau,et al.  Molecular Computation by DNA Hairpin Formation , 2000 .

[164]  Li Hu Technologies and Applications of IC card , 1999 .

[165]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[166]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[167]  P D Kaplan,et al.  DNA solution of the maximal clique problem. , 1997, Science.

[168]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[169]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[170]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.