Low-threshold continuous-wave Raman silicon laser

We report the first demonstration of a low-threshold continuous-wave (c.w.) Raman silicon laser based on a ring-resonator-cavity configuration. We achieved a lasing threshold of 20 mW, slope efficiency of 28% and an output power of 50 mW, with a 25 V reverse bias applied to the p-i-n silicon waveguides. This represents nearly a tenfold improvement in the lasing threshold and more than a fivefold improvement in both slope efficiency and output power over previous results. In addition, we demonstrate for the first time c.w. lasing with zero bias voltage. In this arrangement, the laser does not require an external electrical power supply, and we obtained a lasing threshold of 26 mW and laser output power exceeding 10 mW. The realization of low-threshold lasing and lasing with no external bias is a major advance towards producing practical silicon lasers based on stimulated Raman scattering, for applications ranging from telecommunications and interconnects to optical sensing and biomedical applications.

[1]  Bahram Jalali,et al.  Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier , 2004, IEICE Electron. Express.

[2]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[3]  Omri Raday,et al.  Raman amplification of 40 Gb/s data in low-loss silicon waveguides. , 2007, Optics express.

[4]  Lorenzo Pavesi,et al.  Optical interconnects : the silicon approach , 2006 .

[5]  Dennis Derickson,et al.  Fiber optic test and measurement , 1998 .

[6]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[7]  N. A. Olsson,et al.  Measurement of very low-loss silica on silicon waveguides with a ring resonator , 1991 .

[8]  Hon Ki Tsang,et al.  Efficient Raman amplification in silicon-on-insulator waveguides , 2004 .

[9]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[10]  E. Tangdiongga,et al.  Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter , 2006, Journal of Lightwave Technology.

[11]  Omri Raday,et al.  Monolithic integrated Raman silicon laser. , 2006, Optics express.

[12]  M. Paniccia,et al.  Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2004, Optics express.

[13]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[14]  Mario J. Paniccia,et al.  Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide , 2004 .

[15]  B. Jalali,et al.  Energy harvesting in silicon Raman amplifiers , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[16]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[17]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[18]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[19]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[20]  Michal Lipson,et al.  Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection , 2004 .

[21]  Michal Lipson,et al.  Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. , 2004, Optics express.

[22]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[23]  Lorenzo Pavesi,et al.  Towards the First Silicon Laser , 2003 .

[24]  Christof Debaes,et al.  Modeling mid-infrared continuous-wave silicon-based Raman lasers , 2007, SPIE LASE.

[25]  Ernst Brinkmeyer,et al.  Cascaded silicon Raman lasers as mid-infrared sources , 2006 .

[26]  T. Shoji,et al.  All-optical efficient wavelength conversion using silicon photonic wire waveguide , 2006, IEEE Photonics Technology Letters.

[27]  Alexander Fang,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[28]  Graham T. Reed,et al.  Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator , 2004 .

[29]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[30]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[31]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[32]  K.J. Vahala,et al.  Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Hon Ki Tsang,et al.  Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides. , 2006 .

[34]  Kazumi Wada,et al.  High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform , 2005 .

[35]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[36]  R.M. Osgood,et al.  Theory of Raman-mediated pulsed amplification in silicon-wire waveguides , 2006, IEEE Journal of Quantum Electronics.

[37]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[38]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[39]  Y. Chetrit,et al.  Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules , 2006, IEEE Photonics Technology Letters.

[40]  Jafar G. Naeini,et al.  Raman fiber laser with two parallel couplers , 2005 .

[41]  E. Chow,et al.  Ultra compact biochemical sensor built with two dimensional photonic crystal microcavity , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[42]  G. Reed Device physics: The optical age of silicon , 2004, Nature.

[43]  Ying-Hao Kuo,et al.  High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. , 2006, Optics express.

[44]  Ansheng Liu,et al.  Optical amplification and lasing by stimulated Raman scattering in silicon waveguides , 2006, Journal of Lightwave Technology.