The generation of coherent submillimetre waves

Abstract Electromagnetic waves in the submillimetre spectrum (10–200 cm−1, 300–6000 GHz) have many current and potential applications of importance but the sources at present in use leave much to be desired. Optically-pumped gas lasers now give useful CW power levels at numerous submillimetre frequencies but they are not tunable. Electron-beam backward-wave oscillators designed for submillimetre frequencies demand extremely high precision of machining and alignment; such sources are available for the long-wave end of the submillimetre spectrum but they are currently too large and elaborate in operation for many of the important potential applications. Several methods of exploiting the phenomena of non-linear optics to down-convert the frequency of the signal generated by a tunable, optical or infra-red source have recently been demonstrated and several types of non-linear diode are known to be fast enough to give some output power at submillimetre harmonic frequencies when driven by a microwave oscillator...

[1]  M. Cohn,et al.  Millimeter wave semiconductor diode detectors, mixers, and frequency multipliers , 1966 .

[2]  Tadao Ishibashi,et al.  C.W. oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands , 1976 .

[3]  D. Bloor,et al.  REVIEW ARTICLES: Far infrared spectra of magnetic ions in crystals , 1972 .

[4]  F. Zernike Temperature-Dependent Phase Matching for Far-Infrared Difference-Frequency Generation in InSb , 1969 .

[5]  J. Pinard,et al.  Interferometric stabilization of an optical parametric oscillator , 1972 .

[6]  H. A. Gebbie,et al.  Far-infrared spectroscopy , 1971 .

[7]  S. Ono,et al.  Two different mode interactions in an electron tube with a Fabry—Perot resonator—The Ledatron , 1973 .

[8]  Stephen E. Harris,et al.  Tunable optical parametric oscillators , 1969 .

[9]  T. Misawa High-frequency fall-off of Impatt diode efficiency , 1972 .

[10]  G. D. Bogomolov,et al.  Orotron—An electronic oscillator with an open resonator and reflecting grating , 1969 .

[11]  T. Finnegan,et al.  Observation of coherent microwave radiation emitted by coupled Josephson junctions , 1972 .

[12]  G. T. Wrixon,et al.  Low-Noise Diodes and Mixers for the 1--2-mm Wavelength Region , 1974 .

[13]  R. M. Ryder,et al.  Microwave avalanche diodes , 1971 .

[14]  G. B. Lubkin Stabilization problem threatens future of Scyllac , 1976 .

[15]  J. Geusic,et al.  CONTINUOUS OPTICAL PARAMETRIC OSCILLATION IN Ba2NaNb5O15 , 1968 .

[16]  D. Hanna,et al.  Stimulated electronic Raman scattering as a tunable infrared source , 1975 .

[17]  T. Chang Optically Pumped Submillimeter-Wave Sources , 1974 .

[18]  V. Granatstein,et al.  Strong Submillimeter Radiation from Intense Relativistic Electron Beams , 1974 .

[19]  A. Calawa,et al.  TEMPERATURE AND COMPOSITIONAL DEPENDENCE OF LASER EMISSION IN Pb1−xSnxSe , 1969 .

[20]  R. B. Dyott,et al.  Interaction between an electron beam of periodically varying diameter and EM waves in a cylindrical guide , 1966 .

[21]  Walter Gordy,et al.  Microwave Molecular Spectra , 1970 .

[22]  S. Brueck,et al.  EFFICIENT, SINGLE‐MODE, cw, TUNABLE SPIN‐FLIP RAMAN LASER , 1971 .

[23]  K. Hulme Nonlinear optical crystals and their applications , 1973 .

[24]  S. H. Koenig,et al.  Far Infrared Electron-Ionized Donor Recombination Radiation in Germanium , 1960 .

[25]  J. Soohoo,et al.  POWER AND LINEWIDTH OF TUNABLE STIMULATED FAR‐INFRARED EMISSION IN LiNbO3 , 1971 .

[26]  D. Bloor Bibliography of far infrared spectroscopy , 1970 .

[27]  J. Clarke Supercurrents in lead—copper—-lead sandwiches , 1969, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  B. Lax,et al.  Noncollinear phase matching in GaAs , 1973 .

[29]  Brian D. Josephson,et al.  Supercurrents through barriers , 1965 .

[30]  H. Rees Time response of the high-field electron distribution function in GaAs , 1969 .

[31]  D. Sokoloff,et al.  EXTENSION OF LASER HARMONIC‐FREQUENCY MIXING INTO THE 5‐μ REGIONS , 1970 .

[32]  B. J. Clifton,et al.  cw generation of tunable narrow‐band far‐infrared radiation , 1974 .

[33]  P. N. Butcher,et al.  Calculation of the velocity-field characteristic for gallium arsenide , 1966 .

[34]  L. Mollenauer,et al.  Broadly tunable lasers using color centers , 1975 .

[35]  S. Smith,et al.  Stimulated spin-flip Raman scattering: a magnetically tunable infrared laser. I , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  A. Calawa,et al.  Infrared Spectroscopy of CO Using a Tunable PbSSe Diode Laser , 1971 .

[37]  J. Harries,et al.  Simulating experiments for Spacelab: Measurements of ozone and minor atmospheric constituents , 1975, Nature.

[38]  K. Komatsubara,et al.  Tunable Far-Infrared Radiations from Hot Electrons inn-Type InSb , 1973 .

[39]  V. Bagratashvili,et al.  On the tunable infrared gas lasers , 1971 .

[40]  D. T. Hodges,et al.  Waveguide laser for the far infrared (FIR) pumped by a CO2 laser , 1973 .

[41]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[42]  L. Marton,et al.  Methods of Experimental Physics , 1960 .

[43]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[44]  A. Beck,et al.  Millimetre-wave generator that uses a spiralling electron beam , 1973 .

[45]  F. A. Benson,et al.  Millimetre and submillimetre waves , 1969 .

[46]  A. H. Dayem,et al.  MICROWAVE EMISSION FROM SUPERCONDUCTING POINT‐CONTACTS , 1966 .

[47]  T. Bridges,et al.  Spin resonance matching in tunable far−infrared generation by optical mixing via spin−flip transitions , 1975 .

[48]  F. Kneubühl,et al.  Mechanism of the submillimeter laser emissions from the CN - radical , 1966 .

[49]  D. H. Martin,et al.  COLLISION-INDUCED ABSORPTION OF SUBMILLIMETER RADIATION BY NON-POLAR ATMOSPHERIC GASES , 1962 .

[50]  Y. Carmel Application of an intense relativistic electron beam to microwave generation , 1973 .

[51]  W. T. Read,et al.  A proposed high-frequency, negative-resistance diode , 1958 .

[52]  Kenneth M. Evenson,et al.  High‐Frequency Limit of the Josephson Effect , 1971 .

[53]  B. Kulke Limitations on millimeter-wave power generation with spiraling electron beams , 1972 .

[54]  C. Bradley,et al.  The Josephson junction as a frequency analyser and mixer of submillimetre radiation sources , 1972 .

[55]  B. Lax,et al.  HIGH‐INTENSITY TUNABLE InSb SPIN‐FLIP RAMAN LASER , 1971 .

[56]  Peter P. Sorokin,et al.  Tunable coherent ir source based upon four‐wave parametric conversion in alkali metal vapors , 1973 .

[57]  W. Welch,et al.  Interstellar Molecules and Dense Clouds , 1971, Science.

[58]  K. Mizuno,et al.  Interaction between coherent light waves and free electrons with a reflection grating , 1975, Nature.