Relational dual tableau decision procedure for modal logic K

We present a dual tableau system, RLK, which is itself a deterministic decision procedure verifying validity of K-formulas. The system is constructed in the framework of the original methodology of relational proof systems, determined only by axioms and inference rules, without any external techniques. Furthermore, we describe an implementation of the system RLK in Prolog, and we show some of its advantages.

[1]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[2]  Emilio Corchado,et al.  Soft computing models to identify typical meteorological days , 2011, Log. J. IGPL.

[3]  Rajeev Goré,et al.  Clausal Tableaux for Multimodal Logics of Belief , 2009, Fundam. Informaticae.

[4]  Ian Horrocks,et al.  Computational modal logic , 2007, Handbook of Modal Logic.

[5]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[6]  Rajeev Goré,et al.  The Tableau Workbench , 2009, Electron. Notes Theor. Comput. Sci..

[7]  Dominique Longin,et al.  LoTREC: Logical Tableaux Research Engineering Companion , 2005, TABLEAUX.

[8]  Angel Mora,et al.  Implementing a relational theorem prover for modal logic , 2011, Int. J. Comput. Math..

[9]  Melvin Fitting,et al.  Modal proof theory , 2007, Handbook of Modal Logic.

[10]  Dov M. Gabbay,et al.  Connectionist modal logic: Representing modalities in neural networks , 2007, Theor. Comput. Sci..

[11]  Emilio Corchado,et al.  A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..

[12]  Ewa Orłowska,et al.  Dual Tableaux: Foundations, Methodology, Case Studies , 2010 .

[13]  Álvaro Herrero,et al.  Neural visualization of network traffic data for intrusion detection , 2011, Appl. Soft Comput..

[14]  Helena Rasiowa,et al.  On the Gentzen theorem , 1959 .

[15]  Paulo Novais,et al.  Group decision making and Quality-of-Information in e-Health systems , 2011, Log. J. IGPL.

[16]  Angel Mora,et al.  A new deduction system for deciding validity in modal logic K , 2011, Log. J. IGPL.