Methods for Estimating State and Measurement Noise Covariance Matrices: Aspects and Comparison

Abstract The paper deals with estimation of noise covariance matrices in state and measurement equations of linear discrete-time stochastic dynamic systems. In the last decade several novel methods for noise covariance matrices estimation, which are based on state estimation techniques, have been proposed. Unfortunately, the novel methods have been compared mainly with classical methods proposed in the seventies only. The aim of the paper is to analyse identifiability of state noise parameters by means of the Bayesian approach and to summarise and compare the novel methods from both theoretical and numerical point of view.

[1]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[2]  R. Kashyap Maximum likelihood identification of stochastic linear systems , 1970 .

[3]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[4]  R. Mehra Approaches to adaptive filtering , 1972 .

[5]  P. Bélanger Estimation of noise covariance matrices for a linear time-varying stochastic process , 1972, Autom..

[6]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[7]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[8]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[9]  S. Verdú,et al.  Minimax linear observers and regulators for stochastic systems with uncertain second-order statistics , 1984 .

[10]  Michael Ghil,et al.  An efficient algorithm for estimating noise covariances in distributed systems , 1985 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  S. Sangsuk-Iam,et al.  Analysis of discrete-time Kalman filtering under incorrect noise covariances , 1990 .

[13]  D. Wiberg,et al.  A convergent approximation of the continuous-time optimal parameter estimator , 1993, IEEE Trans. Autom. Control..

[14]  Donald M. Wiberg,et al.  An online parameter estimator for quick convergence and time-varying linear systems , 2000, IEEE Trans. Autom. Control..

[15]  Eric A. Wan,et al.  Dual Extended Kalman Filter Methods , 2002 .

[16]  J. Dunik,et al.  Performance analysis of derivative-free filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[17]  Xavier Bombois,et al.  Designing a Kalman filter when no noise covariance information is available , 2005 .

[18]  J. ´. ík Performance analysis of derivative-free filters , 2005 .

[19]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[20]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[21]  Sten Bay Jørgensen,et al.  A Generalized Autocovariance Least-Squares Method for Kalman Filter Tuning , 2008 .

[22]  Miroslav Šimandl,et al.  Estimation of State and Measurement Noise Covariance Matrices by Multi-Step Prediction , 2008 .

[23]  Suk-Kyo Hong,et al.  A Fix-Up for the EKF Parameter Estimator , 2008 .

[24]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .