Multistart Methods for Quantum Approximate optimization

Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.

[1]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[2]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[3]  Ye Wang,et al.  Channel Decoding with Quantum Approximate Optimization Algorithm , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[4]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[5]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[6]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[7]  D. Watts Networks, Dynamics, and the Small‐World Phenomenon1 , 1999, American Journal of Sociology.

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[10]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[11]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[12]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[13]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[14]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[15]  Ilya Safro,et al.  Community Detection Across Emerging Quantum Architectures , 2018, ArXiv.

[16]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[17]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[18]  H. Neven,et al.  Quantum Algorithms for Fixed Qubit Architectures , 2017, 1703.06199.

[19]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[20]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[22]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[23]  Christian F. A. Negre,et al.  Detecting multiple communities using quantum annealing on the D-Wave system , 2019, PloS one.

[24]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[25]  Angelo Bifone,et al.  Community detection in weighted brain connectivity networks beyond the resolution limit , 2016, NeuroImage.

[26]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[27]  Allan Kuchinsky,et al.  GLay: community structure analysis of biological networks , 2010, Bioinform..

[28]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[29]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[30]  Angelo Bifone,et al.  Hierarchical organization of functional connectivity in the mouse brain: a complex network approach , 2016, Scientific Reports.

[31]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[32]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[33]  Martin Rötteler,et al.  Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms , 2017, ASIACRYPT.

[34]  John Napp,et al.  Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms. , 2019, Physical review letters.

[35]  Stefan M. Wild,et al.  A batch, derivative-free algorithm for finding multiple local minima , 2016 .

[36]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[37]  Prasad Raghavendra,et al.  Beating the random assignment on constraint satisfaction problems of bounded degree , 2015, Electron. Colloquium Comput. Complex..

[38]  U. Brandes,et al.  Maximizing Modularity is hard , 2006, physics/0608255.

[39]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[40]  Ilya Safro,et al.  Network Community Detection on Small Quantum Computers , 2018, Advanced Quantum Technologies.

[41]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[42]  Stuart Hadfield,et al.  The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View , 2017, 1706.02998.

[43]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[44]  M. Hastings,et al.  Training A Quantum Optimizer , 2016, 1605.05370.

[45]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[46]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[47]  Stefan M. Wild,et al.  Asynchronously parallel optimization solver for finding multiple minima , 2018, Math. Program. Comput..

[48]  Ojas Parekh,et al.  Quantum Optimization and Approximation Algorithms. , 2019 .

[49]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[50]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[51]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[52]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[53]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[54]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[55]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[56]  T. Rowan Functional stability analysis of numerical algorithms , 1990 .

[57]  Raj Rao Nadakuditi,et al.  Graph spectra and the detectability of community structure in networks , 2012, Physical review letters.

[58]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.