Single and Coupled Nanobeam Cavities

In the coming decade in physics great effort will probably be devoted, among other things, to improving quantum storage and the development of quantum computer. To make use of quantum processes one should avoid decoherence influence of surroundings, or use specifically designed environment to modify the process considered. This is the case when an atom or a quantum dot — nanosized emitter in an active material — is located inside a medium exhibiting modified density of electromagnetic states, e.g., a photonic crystal. In fact, prospects to modify the density of states gave the major motivation to investigate photonic crystals back in the years of their inception. Still they generate large interest from the fundamental cavity quantum electrodynamics perspectives [1–3]. Photonic crystals based structures — beam splitters, cavities, slow light and logic devices — allow for a lot of diverse operations with light. Main advantages of dielectric photonic crystal components over, for instance, their plasmonic analogues are low-loss operation and low-cost production.

[1]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[2]  Susumu Noda,et al.  Symmetrically glass-clad photonic crystal nanocavities with ultrahigh quality factors. , 2011, Optics letters.

[3]  Emmanuel Picard,et al.  An air-slotted nanoresonator relying on coupled high Q small V Fabry-Perot nanocavities , 2009 .

[4]  Min Qiu,et al.  Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. , 2004, Optics express.

[5]  土屋 一郎,et al.  Ultra-High-Q Photonic Double-Heterostructure Nanocavity , 2005 .

[6]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[7]  Johann Peter Reithmaier,et al.  Optical Modes in Photonic Molecules , 1998 .

[8]  K. Vahala Optical microcavities , 2003, Nature.

[9]  D. M. Shyroki,et al.  Modeling of Nanophotonic Resonators With the Finite-Difference Frequency-Domain Method , 2011, IEEE Transactions on Antennas and Propagation.

[10]  Annamaria Gerardino,et al.  Mode hybridization in photonic crystal molecules , 2010 .

[11]  Yuri S. Kivshar,et al.  Cavity mode control in side-coupled periodic waveguides: Theory and experiment , 2010 .

[12]  S. Hughes,et al.  Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient "on chip" single photon gun. , 2007, Physical review letters.

[13]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[14]  Marko Loncar,et al.  Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities. , 2009, Optics letters.

[15]  Li Dai,et al.  Coherent control of long-distance steady-state entanglement in lossy resonator arrays , 2010 .

[16]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[17]  A Yariv,et al.  Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. Combrie,et al.  Directive emission from high-Q photonic crystal cavities through band folding , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[19]  Masaya Notomi,et al.  On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning. , 2008, Optics express.

[20]  Andrei Lavrinenko,et al.  Nanopillars photonic crystal waveguides. , 2004, Optics express.

[21]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[22]  J Capmany,et al.  Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique. , 2011, Optics letters.

[23]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[24]  J. Harris,et al.  Nanobeam photonic crystal cavity quantum dot laser. , 2010, Optics express.

[25]  Jelena Vuckovic,et al.  Photonic crystal cavities in silicon dioxide , 2009, 0910.0222.

[26]  A. Messiah Quantum Mechanics , 1961 .

[27]  All optical switching in silicon-on-insulator photonic wire nano-cavities , 2009 .

[28]  D. Wiersma,et al.  Tuning of photonic crystal cavities by controlled removal of locally infiltrated water , 2009 .

[29]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[30]  Yong-hee Lee,et al.  Vertical beaming of wavelength-scale photonic crystal resonators , 2006, physics/0604019.

[31]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[32]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[33]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[34]  R. McPhedran,et al.  Symmetry and degeneracy in microstructured optical fibers. , 2001, Optics letters.

[35]  E. Picard,et al.  Addressable subwavelength grids of confined light in a multislotted nanoresonator , 2011 .

[36]  P. Deotare,et al.  Coupled photonic crystal nanobeam cavities , 2009, 0905.0109.

[37]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[38]  Vittorio Giovannetti,et al.  The quantum-optical Josephson interferometer , 2008, 0811.3762.

[39]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[40]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[41]  Benjamin Dwir,et al.  1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. , 2010, Optics express.

[42]  P Lalanne,et al.  Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities. , 2005, Optics express.

[43]  Amnon Yariv,et al.  Second-harmonic generation with pulses in a coupled-resonator optical waveguide. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.