On the Effects of Outliers on Evolutionary Optimization

Most studies concerned with the effects of noise on evolutionary computation have assumed a Gaussian noise model. However, practical optimization strategies frequently face situations where the noise is not Gaussian, and sometimes it does not even have a finite variance. In particular, outliers may be present. In this paper, Cauchy distributed noise is used for modeling such situations. A performance law that describes how the progress of an evolution strategy using intermediate recombination scales in the presence of such noise is derived. Implications of that law are studied numerically, and comparisons with the case of Gaussian noise are drawn.

[1]  Bernhard Sendhoff,et al.  On the Behavior of (μ/μ1, λ)-ES Optimizing Functions Disturbed by Generalized Noise , 2002, FOGA.

[2]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[3]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[4]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  Hans-Georg Beyer,et al.  Efficiency and Mutation Strength Adaptation of the (mu, muI, lambda)-ES in a Noisy Environment , 2000, PPSN.

[7]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[8]  Hans-Georg Beyer,et al.  Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.

[9]  Hans-Georg Beyer,et al.  Efficiency and Mutation Strength Adaptation of the in a Noisy Environment , 2000 .

[10]  G. Unter Rudolph Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations , 1998 .

[11]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[12]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[13]  Hans-Georg Beyer,et al.  Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise , 2002, Theor. Comput. Sci..

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  M. Kendall,et al.  Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[18]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[19]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[20]  Magnus Rattray,et al.  Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning , 1996, FOGA.

[21]  Haikady N. Nagaraja,et al.  18 Concomitants of order statistics , 1998, Order statistics.

[22]  A. Stuart,et al.  Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory , 1988 .