Influence of Functionalized Substituents on the Electron-Transfer Abilities of Copper Guanidinoquinoline Complexes

[1]  Julia Stanek,et al.  Renaissance of the entatic state principle , 2018, Coordination Chemistry Reviews.

[2]  W. Zinth,et al.  Transferring the entatic-state principle to copper photochemistry. , 2018, Nature chemistry.

[3]  Matthew D. Jones,et al.  Reactivity of Zinc Halide Complexes Containing Camphor-Derived Guanidine Ligands with Technical rac-Lactide , 2017 .

[4]  Richard Grunzke,et al.  Copper Guanidinoquinoline Complexes as Entatic State Models of Electron-Transfer Proteins. , 2017, Chemistry.

[5]  Hans-Jörg Himmel,et al.  Inter- and Intramolecular Electron Transfer in Copper Complexes: Electronic Entatic State with Redox-Active Guanidine Ligands. , 2017, Chemistry.

[6]  P. Comba,et al.  Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. , 2017, Inorganic chemistry.

[7]  M. Biednov,et al.  Oxygen Activation by Copper Complexes with an Aromatic Bis(guanidine) Ligand , 2017 .

[8]  Kelly J. Gaffney,et al.  Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy , 2017, Science.

[9]  E. Raven,et al.  Locked and loaded for apoptosis , 2017, Science.

[10]  U. Flörke,et al.  Zinc chloride complexes with aliphatic and aromatic guanidine hybrid ligands and their activity in the ring‐opening polymerisation of D,L‐lactide , 2016 .

[11]  Julia Stanek,et al.  Implications of Guanidine Substitution on Copper Complexes as Entatic‐State Models , 2016 .

[12]  U. Flörke,et al.  A Comprehensive Study of Copper Guanidine Quinoline Complexes: Predicting the Activity of Catalysts in ATRP with DFT. , 2016, Chemistry.

[13]  S. Fukuzumi,et al.  A Bispidine Iron(IV)-Oxo Complex in the Entatic State. , 2016, Angewandte Chemie.

[14]  Maria M. M. Santos,et al.  Novel squaramides with in vitro liver stage antiplasmodial activity. , 2016, Bioorganic & medicinal chemistry.

[15]  Eric W Dahl,et al.  Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square-Planar Copper(I) Complex. , 2016, Angewandte Chemie.

[16]  T. D. Stack,et al.  Formation of hybrid guanidine-stabilized bis(μ-oxo)dicopper cores in solution: Electronic and steric perturbations. , 2015, European journal of inorganic chemistry.

[17]  François Lambert,et al.  Entasis through hook-and-loop fastening in a glycoligand with cumulative weak forces stabilizing Cu(I). , 2015, Journal of the American Chemical Society.

[18]  Richard Grunzke,et al.  Insights into the influence of dispersion correction in the theoretical treatment of guanidine‐quinoline copper(I) complexes , 2014, J. Comput. Chem..

[19]  Yi Lu,et al.  Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers , 2014, Chemical reviews.

[20]  Li Tian,et al.  Copper active sites in biology. , 2014, Chemical reviews.

[21]  S. Herres‐Pawlis,et al.  New Guanidine-Pyridine Copper Complexes and Their Application in ATRP , 2014 .

[22]  Sonja Herres-Pawlis,et al.  Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory† , 2014, J. Comput. Chem..

[23]  Alexander Hoffmann,et al.  Den entatischen Zustand im Griff – ein Duo von Kupfer‐Komplexen , 2014 .

[24]  Alexander Hoffmann,et al.  Catching an entatic state--a pair of copper complexes. , 2014, Angewandte Chemie.

[25]  Frank Neese,et al.  Outer-sphere contributions to the electronic structure of type zero copper proteins. , 2012, Journal of the American Chemical Society.

[26]  Sonja Herres-Pawlis,et al.  Lactide Polymerisation with Complexes of Neutral N‐Donors – New Strategies for Robust Catalysts , 2012 .

[27]  U. Flörke,et al.  Zinc Complexes with Guanidine‐Pyridine Hybrid Ligands: Anion Effect and Catalytic Activity , 2015 .

[28]  Alexander Hoffmann,et al.  (Guanidine)copper complexes: structural variety and application in bioinorganic chemistry and catalysis , 2011 .

[29]  U. Flörke,et al.  Synthesis and Application of New Guanidine Copper Complexes in Atom Transfer Radical Polymerisation , 2011 .

[30]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[31]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[32]  Harry B Gray,et al.  Electron transfer reactivity of type zero Pseudomonas aeruginosa azurin. , 2011, Journal of the American Chemical Society.

[33]  Edward I. Solomon,et al.  Recent advances in understanding blue copper proteins , 2011 .

[34]  A. Rosenzweig Bioinorganic chemistry: Zeroing in on a new copper site. , 2009, Nature chemistry.

[35]  Harry B. Gray,et al.  Type Zero Copper Proteins , 2009, Nature chemistry.

[36]  Sonja Herres-Pawlis,et al.  Stabilisation of a highly reactive bis(mu-oxo)dicopper(III) species at room temperature by electronic and steric constraint of an unconventional nitrogen donor ligand. , 2009, Chemistry.

[37]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[38]  Alexander Hoffmann,et al.  Synthesis and properties of guanidine-pyridine hybridligands and structural characterisation of their mono- and bis(chelated) cobalt complexes , 2009 .

[39]  Peter Comba,et al.  Computation of structures and properties of transition metal compounds , 2009 .

[40]  H. Gray,et al.  High-potential C112D/M121X (X = M, E, H, L) Pseudomonas aeruginosa azurins. , 2009, Inorganic chemistry.

[41]  Matthias Tamm,et al.  Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. , 2008, Dalton transactions.

[42]  Timothy J Nelson,et al.  A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand. , 2007, Journal of the American Chemical Society.

[43]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[44]  E. Solomon,et al.  Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. , 2006, Inorganic chemistry.

[45]  K. Harms,et al.  Kristallographische Charakterisierung eines synthetischen 1:1-End-on-Kupferdisauerstoff- Adduktkomplexes† , 2006 .

[46]  Klaus Harms,et al.  Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. , 2006, Angewandte Chemie.

[47]  Sukhdeep Kaur,et al.  Tetramethylguanidino‐tris(2‐aminoethyl)amine: A novel ligand for copper‐based atom transfer radical polymerization , 2005 .

[48]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[49]  R. Jordan,et al.  Kinetic studies of tris(2,2′-bipyridine)iron(III) perchlorate with cobaloxime, [Co(dmgBF2)2(H2O)2] , 2005 .

[50]  M. Ferguson,et al.  Reaction of copper(II) with ferrocene and 1,1'-dimethylferrocene in aqueous acetonitrile: the copper(II/I) self-exchange rate. , 2005, Inorganic chemistry.

[51]  P. Comba,et al.  Slow Electron Self‐Exchange in Spite of a Small Inner‐Sphere Reorganisation Energy − The Electron‐Transfer Properties of a Copper Complex with a Tetradentate Bispidine Ligand , 2004 .

[52]  Siegfried Schneider,et al.  Spektroskopischer und theoretischer Nachweis eines beständigen End‐on‐Kupfersuperoxokomplexes , 2004 .

[53]  Siegfried Schneider,et al.  Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. , 2004, Angewandte Chemie.

[54]  D. Rorabacher,et al.  Electron transfer by copper centers. , 2004, Chemical reviews.

[55]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[56]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[57]  R. Gschwind,et al.  1,8-bis(tetramethylguanidino)naphthalene (TMGN): a new, superbasic and kinetically active "proton sponge". , 2002, Chemistry.

[58]  Peter Comba,et al.  Coordination compounds in the entatic state , 2000 .

[59]  P. Comba Strains and stresses in coordination compounds , 1999 .

[60]  Lutz H. Gade Koordinationschemie: GADE:KOORDINATIONS-CHEMIE O-BK , 1998 .

[61]  R. Marcus Transfer reactions in chemistry. Theory and experiment , 1997 .

[62]  B. Malmström Rack-induced bonding in blue-copper proteins. , 1994, European journal of biochemistry.

[63]  D. Clarke,et al.  Preparation and fungitoxicity of 3,6-dichloro-and 3,6-dibromo-8-quinolinols , 1994 .

[64]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[65]  Stephen F. Nelsen,et al.  Estimation of marcus λ for p‐phenylenediamines from the optical spectrum of a dimeric derivative , 1994 .

[66]  Rudolph A. Marcus,et al.  Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) , 1993 .

[67]  R. A. Marcus Elektronentransferreaktionen in der Chemie - Theorie und Experiment (Nobel-Vortrag)† , 1993 .

[68]  L. A. Ochrymowycz,et al.  Applicability of the Marcus relationship to copper(II/I) electron transfer. Comparison of NMR self-exchange relaxation and reduction and oxidation cross-reaction kinetics for a macrocyclic amino tetrathiaether-copper(II/I) complex in aqueous solution , 1993 .

[69]  L. A. Ochrymowycz,et al.  Direct determination of the self-exchange electron-transfer rate constant for a copper(II/I) macrocyclic pentathiaether complex , 1991 .

[70]  B. Malmström Structural control of electron-transfer properties in metalloproteins , 1990, Biology of Metals.

[71]  B. Karlsson,et al.  Rack‐induced bonding in blue copper proteins: Spectroscopic properties and reduction potential of the azurin mutant Met‐121 → Leu , 1989 .

[72]  L. A. Ochrymowycz,et al.  Structure-reactivity relationships in copper(II)/copper(I) electron-transfer kinetics: evaluation of self-exchange rate constants for copper polythia ether complexes , 1987 .

[73]  Stephen F. Nelsen,et al.  Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations , 1987 .

[74]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[75]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[76]  M. Murata,et al.  X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution , 1978, Nature.

[77]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Christian Würtele,et al.  Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation. , 2008, Angewandte Chemie.

[79]  C. Buning,et al.  Loop-Directed Mutagenesis of the Blue Copper Protein Amicyanin from Paracoccus versutus and Its Effect on the Structure and the Activity of the Type-1 Copper Site , 2000 .

[80]  T. Elder,et al.  Internal Reorganization Energies for Copper Redox Couples: The Slow Electron-Transfer Reactions of the [CuII/I(bib)2]2+/+ Couple , 1999 .

[81]  H. Schugar,et al.  Preparation, structure, and properties of pseudotetrahedral, D2d complexes of copper(II), nickel(II), cobalt(II), copper(I), and zinc(II) with the geometrically constraining bidentate ligand 2,2'-bis(2-imidazolyl)biphenyl. Examination of electron self-exchange for the Cu(I)/Cu(II) pair , 1990 .

[82]  R. S. Nyholm,et al.  681. Studies in co-ordination chemistry. Part XIII. Magnetic moments and bond types of transition-metal complexes , 1952 .