Synchronization stability of three chaotic systems with linear coupling

This Letter introduces a new method—mode decomposition—for stability analysis of periodic orbits. Using this method, the stability of a periodic solution of an autonomous system, as well as the stability of synchronization within three chaotic systems with linear coupling, can be analyzed. As an example, a rigorous sufficient condition on the coupling coefficients for achieving chaos synchronization is obtained, for the case of three-coupled identical Lorenz systems. Numerical simulations are shown for demonstration.

[1]  J. Keener,et al.  Phase locking of biological clocks , 1982, Journal of mathematical biology.

[2]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[3]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[4]  A. Winfree The geometry of biological time , 1991 .

[5]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[6]  A. A. Alexeyev,et al.  CHAOTIC SYNCHRONIZATION OF MUTUALLY-COUPLED GENERATORS WITH FREQUENCY-CONTROLLED FEEDBACK LOOP , 1995 .

[7]  Y. Kuramoto,et al.  Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities , 1987 .

[8]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[9]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .

[10]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[11]  Westervelt,et al.  Simple model of collective transport with phase slippage. , 1988, Physical review letters.

[12]  Suochun Zhang,et al.  Dynamical behavior in linearly coupled Oregonators , 2001 .

[13]  Daido,et al.  Lower critical dimension for populations of oscillators with randomly distributed frequencies: A renormalization-group analysis. , 1988, Physical review letters.

[14]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[15]  Ying-Cheng Lai,et al.  Experimental Observation of Lag Synchronization in Coupled Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[16]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[17]  V. Torre,et al.  A theory of synchronization of heart pace-maker cells. , 1976, Journal of theoretical biology.

[18]  B. M. Fulk MATH , 1992 .

[19]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[22]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[23]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .