Multiple classifier combination using reject options and markov fusion networks

The audio/visual emotion challenge (AVEC) resembles a benchmarking data collection in order to evaluate and develop techniques for the recognition of affective states. In our work, we present a Markov fusion network (MFN) for the combination of different individual classifiers, that is derived from the well-known Markov random fields (MRF). It is capable to restore missing values from a sequence of decisions and can integrate multiple channels and weights them dynamically using confidences. The approach shows promising challenge results compared to the baseline.

[1]  Günther Palm,et al.  A generic framework for the inference of user states in human computer interaction , 2012, Journal on Multimodal User Interfaces.

[2]  Mário A. T. Figueiredo,et al.  Similarity-Based Clustering of Sequences Using Hidden Markov Models , 2003, MLDM.

[3]  Roddy Cowie,et al.  FEELTRACE: an instrument for recording perceived emotion in real time , 2000 .

[4]  Maja Pantic,et al.  The SEMAINE corpus of emotionally coloured character interactions , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[5]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[6]  Günther Palm,et al.  Towards Emotion Recognition in Human Computer Interaction , 2012, WIRN.

[7]  Mario Vento,et al.  To reject or not to reject: that is the question-an answer in case of neural classifiers , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[8]  Friedhelm Schwenker,et al.  Incorporating uncertainty in a layered HMM architecture for human activity recognition , 2011, J-HGBU '11.

[9]  K. Scherer,et al.  The World of Emotions is not Two-Dimensional , 2007, Psychological science.

[10]  Sebastian Thrun,et al.  An Application of Markov Random Fields to Range Sensing , 2005, NIPS.

[11]  Hynek Hermansky,et al.  RASTA-PLP speech analysis technique , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[12]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[13]  Björn W. Schuller,et al.  AVEC 2012: the continuous audio/visual emotion challenge , 2012, ICMI '12.

[14]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Björn W. Schuller,et al.  AVEC 2011-The First International Audio/Visual Emotion Challenge , 2011, ACII.

[17]  Zheng Fang,et al.  Comparison of different implementations of MFCC , 2001 .

[18]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[19]  Thomas Fang Zheng,et al.  Comparison of different implementations of MFCC , 2001, Journal of Computer Science and Technology.

[20]  Gwen Littlewort,et al.  The computer expression recognition toolbox (CERT) , 2011, Face and Gesture 2011.

[21]  Roddy Cowie,et al.  AVEC 2012: the continuous audio/visual emotion challenge - an introduction , 2012, ICMI.