Parameter Estimation and Model Selection in Extragalactic Astronomy

Astronomy is rife with multi-instrument, multiple wave band data sets and complex physical theories. An astronomer, therefore, needs to (1) infer the parameters of models from multiple hypotheses; (2) inter-compare hypotheses; and (3) test that the data is sufficiently well explained by the models. Most often, all three needs are inseparably linked. The Bayesian approach allows these to be addressed simultaneously and consistently. Although Bayesian inference is well-suited to problems of inference in astronomical science, the most commonly used tools best treat idealized or specialized models. Here, I describe our experience based on two such problems in extragalactic science—testing models based on galaxy images and exploring recipes galaxy evolution using semi-analytic models—using the UMass Bayesian Inference Engine (BIE), a parallel-optimized software package for parameter inference and model selection. The BIE is designed as a collaborative platform for Bayesian methodology for astronomical problems.

[1]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[2]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[3]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[4]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[5]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[6]  A. Gelman A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing * , 2003 .

[7]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  L. Wasserman,et al.  Bayesian goodness-of-fit testing using infinite-dimensional exponential families , 1998 .

[10]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[11]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[12]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[13]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[14]  Martin D. Weinberg,et al.  Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution , 2009, 0911.1777.

[15]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  A Markov Chain Monte Carlo Convergence Diagnostic Using Subsampling , 1999 .

[18]  N. Katz,et al.  New insights into galaxy structure from galphat– I. Motivation, methodology and benchmarks for Sérsic models , 2010, 1010.1266.

[19]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..