The role of w-tilting modules in relative Gorenstein (co)homology

Abstract Let R R be a ring, C C be a left R R -module and S = End R ( C ) S={{\rm{End}}}_{R}\left(C) . When C C is semidualizing, the Auslander class A C ( S ) {{\mathcal{A}}}_{C}\left(S) and the Bass class ℬ C ( R ) {{\mathcal{ {\mathcal B} }}}_{C}\left(R) associated with C C have been the subject of extensive investigations. It has been proved that these classes, also known as Foxby classes, are one of the central concepts of (relative) Gorenstein homological algebra. In this paper, we answer several natural questions which arise when we weaken the condition of C C being semidualizing: if we let C C be w-tilting (see Definition 2.1), we establish the conditions for the pair ( A C ( S ) , A C ( S ) ⊥ 1 ) \left({{\mathcal{A}}}_{C}\left(S),{{\mathcal{A}}}_{C}{\left(S)}^{{\perp }_{1}}) to be a perfect cotorsion theory and for the pair ( B C ⊥ 1 ( R ) , B C ( R ) ) \left({}^{{\perp }_{1}}B_{C}\left(R),{B}_{C}\left(R)) to be a complete hereditary cotorsion theory. This tells us when the classes of Auslander and Bass are preenveloping and precovering, which generalizes a number of results disseminated in the literature. We investigate Gorenstein flat modules relative to a not necessarily semidualizing module C C and we find conditions for the class of G C {G}_{C} -projective modules to be special precovering, the class of G C {G}_{C} -flat modules to be covering, the one of Gorenstein C C -projective modules to be precovering and that of Gorenstein C C -injective modules to be preenveloping. We also find how to recover Foxby classes from Add R ( C ) {{\rm{Add}}}_{R}\left(C) -resolutions of R R .

[1]  R. Wisbauer Cotilting objects and dualities , 2019, Representations of Algebras.

[2]  E. Enochs,et al.  Gorenstein flat precovers and Gorenstein injective preenvelopes in Grothendieck categories , 2019, Arkiv för Matematik.

[3]  J. Asadollahi,et al.  On the existence of Gorenstein projective precovers , 2016 .

[4]  D. Bennis,et al.  When do Foxby classes coincide with the classes of modules of finite Gorenstein dimensions , 2016 .

[5]  Aimin Xu,et al.  Semidualizing bimodules and related Gorenstein homological dimensions , 2016 .

[6]  D. Bennis,et al.  Relative Projective and Injective Dimensions , 2016 .

[7]  Juxiang Sun,et al.  VW-Gorenstein categories , 2016 .

[8]  D. Bennis,et al.  Relative Gorenstein Dimensions , 2016 .

[9]  James Gillespie Models for homotopy categories of injectives and Gorenstein injectives , 2015, 1502.05530.

[10]  B. Torrecillas,et al.  Semidualizing and Tilting Adjoint Pairs, Applications to Comodules , 2015 .

[11]  A. Xu,et al.  Gorenstein Projective Dimension Relative to a Semidualizing Bimodule , 2013 .

[12]  Juxiang Sun A characterization of Auslander category , 2013, Turkish Journal of Mathematics.

[13]  Zhaoyong Huang Proper Resolutions and Gorenstein Categories , 2012, 1203.4110.

[14]  Yuxian Geng,et al.  W-Gorenstein modules , 2011 .

[15]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[16]  Peter Jørgensen,et al.  Cotorsion pairs induced by duality pairs , 2009, 0905.0776.

[17]  E. Enochs,et al.  Gorenstein categories and Tate cohomology on projective schemes , 2007, 0711.1181.

[18]  D. White,et al.  Foxby equivalence over associative rings , 2006, math/0611838.

[19]  D. White Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.

[20]  Overtoun M. G. Jenda,et al.  DUALIZING MODULES AND n-PERFECT RINGS , 2005, Proceedings of the Edinburgh Mathematical Society.

[21]  H. Krause the stable derived category of a noetherian scheme , 2004, Compositio Mathematica.

[22]  Peter Jørgensen,et al.  Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.

[23]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[24]  G. Rozas,et al.  Covers and envelopes in the category of complexes of modules , 1999 .

[25]  J. Rada,et al.  Rings characterized by (pre)envelopes and (pre)covers of their modules , 1998 .

[26]  Jinzhong Xu Flat covers of modules , 1996 .

[27]  Overtoun M. G. Jenda,et al.  Foxby duality and Gorenstein injective and projective modules , 1996 .

[28]  H. Foxby Quasi‐perfect modules over COHEN‐MACAULAY Rings , 1975 .