Centromeres Drive a Hard Bargain.

[1]  P. Bureš,et al.  CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model , 2016, Scientific Reports.

[2]  P. Bureš,et al.  Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. , 2016, Annals of botany.

[3]  S. Gregory,et al.  Human centromere repositioning within euchromatin after partial chromosome deletion , 2016, Chromosome Research.

[4]  C. Peichel,et al.  Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish , 2016, Chromosome Research.

[5]  M. E. Aldrup-MacDonald,et al.  Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles , 2016, Genome research.

[6]  B. Mellone,et al.  Chromatin assembly: Journey to the CENter of the chromosome , 2016, The Journal of cell biology.

[7]  B. Mellone,et al.  Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species. , 2016, Developmental cell.

[8]  Giulia Antonazzo,et al.  FlyBase: establishing a Gene Group resource for Drosophila melanogaster , 2015, Nucleic Acids Res..

[9]  I. Cheeseman,et al.  The molecular basis for centromere identity and function , 2015, Nature Reviews Molecular Cell Biology.

[10]  Arpiar Saunders,et al.  Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive. , 2015, Molecular biology and evolution.

[11]  M. Koch,et al.  A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN] , 2015, Plant Cell.

[12]  L. Kral,et al.  Adaptive Evolution of CENP-A in Percid Fishes , 2015, Genes.

[13]  Glennis A. Logsdon,et al.  Both tails and the centromere targeting domain of CENP-A are required for centromere establishment , 2015, The Journal of cell biology.

[14]  S. Maheshwari,et al.  Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids , 2015, PLoS genetics.

[15]  M. Lampson,et al.  Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice , 2014, Current Biology.

[16]  Harmit S. Malik,et al.  Genetic Conflicts: Stronger Centromeres Win Tug-of-War in Female Meiosis , 2014, Current Biology.

[17]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[18]  S. Henikoff,et al.  Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects , 2014, eLife.

[19]  W. Earnshaw,et al.  The Centromere: Chromatin Foundation for the Kinetochore Machinery , 2014, Developmental cell.

[20]  K. Gull,et al.  Discovery of Unconventional Kinetochores in Kinetoplastids , 2014, Cell.

[21]  K. Luger,et al.  CAL1 is the Drosophila CENP-A assembly factor , 2014, The Journal of cell biology.

[22]  A. Desai,et al.  A two-step mechanism for epigenetic specification of centromere identity and function , 2013, Nature Cell Biology.

[23]  Hiroshi Kimura,et al.  Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres , 2013, Developmental cell.

[24]  Hollis G. Potter,et al.  Author Manuscript , 2013 .

[25]  G. Karpen,et al.  The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C , 2012, PLoS biology.

[26]  Jeffrey Ross-Ibarra,et al.  Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution , 2012, Genome Biology.

[27]  B. Mellone,et al.  A Role for the CAL1-Partner Modulo in Centromere Integrity and Accurate Chromosome Segregation in Drosophila , 2012, PloS one.

[28]  Jiming Jiang,et al.  Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W] , 2012, Plant Cell.

[29]  P. Lapierre,et al.  Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila , 2012, Chromosome Research.

[30]  B. Sullivan,et al.  Dicentric chromosomes: unique models to study centromere function and inactivation , 2012, Chromosome Research.

[31]  V. Noskov,et al.  Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly , 2012, The EMBO journal.

[32]  P. Ferree,et al.  How Can Satellite DNA Divergence Cause Reproductive Isolation? Let Us Count the Chromosomal Ways , 2012, Genetics research international.

[33]  P. Bureš,et al.  Evidence for Centromere Drive in the Holocentric Chromosomes of Caenorhabditis , 2012, PloS one.

[34]  H. Kurumizaka,et al.  Comparison between the CENP-A and histone H3 structures in nucleosomes , 2012, Nucleus.

[35]  M. Garrido-Ramos,et al.  The repetitive DNA content of eukaryotic genomes. , 2012, Genome dynamics.

[36]  N. Archidiacono,et al.  Centromere repositioning in mammals , 2011, Heredity.

[37]  M. J. Mendiburo,et al.  Drosophila CENH3 Is Sufficient for Centromere Formation , 2011, Science.

[38]  F. Azorín,et al.  The F Box Protein Partner of Paired Regulates Stability of Drosophila Centromeric Histone H3, CenH3CID , 2011, Current Biology.

[39]  Hiroshi Kimura,et al.  Crystal structure of the human centromeric nucleosome containing CENP-A , 2011, Nature.

[40]  G. Karpen,et al.  Assembly of Drosophila Centromeric Chromatin Proteins during Mitosis , 2011, PLoS genetics.

[41]  G. Karpen,et al.  H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase , 2011, Nucleus.

[42]  C. Lehner,et al.  Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1 , 2010, Journal of Cell Science.

[43]  V. Sundaresan,et al.  The Rapidly Evolving Centromere-Specific Histone Has Stringent Functional Requirements in Arabidopsis thaliana , 2010, Genetics.

[44]  R. O’Neill,et al.  Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. , 2010, Annual review of genomics and human genetics.

[45]  Kevan J. Salimian,et al.  Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors , 2010, The Journal of cell biology.

[46]  B. E. Black,et al.  The Structure of (CENP-A/H4)2 Reveals Physical Features that Mark Centromeres , 2010, Nature.

[47]  E. Green,et al.  Adaptive evolution of foundation kinetochore proteins in primates. , 2010, Molecular biology and evolution.

[48]  R. Allshire,et al.  Building centromeres: home sweet home or a nomadic existence? , 2010, Current opinion in genetics & development.

[49]  J. N. MacLeod,et al.  Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse , 2009, Science.

[50]  D. Barbash,et al.  Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila , 2009, PLoS biology.

[51]  S. Henikoff,et al.  Major Evolutionary Transitions in Centromere Complexity , 2009, Cell.

[52]  C. Ponting,et al.  Common Ancestry of the CENP-A Chaperones Scm3 and HJURP , 2009, Cell.

[53]  J. Yates,et al.  Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP , 2009, Cell.

[54]  J. Berman,et al.  Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans , 2009, PLoS genetics.

[55]  P. Russell,et al.  Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. , 2009, Molecular cell.

[56]  Harmit S. Malik The centromere-drive hypothesis: a simple basis for centromere complexity. , 2009, Progress in molecular and subcellular biology.

[57]  D. Charlesworth Competitive Centromeres , 2008, Science.

[58]  Arpiar Saunders,et al.  Centromere-Associated Female Meiotic Drive Entails Male Fitness Costs in Monkeyflowers , 2008, Science.

[59]  Owen J. Marshall,et al.  Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. , 2008, American journal of human genetics.

[60]  Yuki Ogiyama,et al.  Biphasic incorporation of centromeric histone CENP-A in fission yeast. , 2007, Molecular biology of the cell.

[61]  M. Washburn,et al.  Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. , 2007, Molecular cell.

[62]  B. E. Black,et al.  Propagation of centromeric chromatin requires exit from mitosis , 2007, The Journal of cell biology.

[63]  C. Lehner,et al.  Incorporation of Drosophila CID/CENP-A and CENP-C into Centromeres during Early Embryonic Anaphase , 2007, Current Biology.

[64]  A. Desai,et al.  Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. , 2007, Molecular cell.

[65]  F. Azorín,et al.  Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres , 2006, Nucleic acids research.

[66]  J. Fuchs,et al.  Loading of Arabidopsis Centromeric Histone CENH3 Occurs Mainly during G2 and Requires the Presence of the Histone Fold Domain , 2006, The Plant Cell Online.

[67]  Harmit S. Malik,et al.  Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. , 2006, Biochemical Society transactions.

[68]  G. Karpen,et al.  Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. , 2006, Developmental cell.

[69]  K. Oegema,et al.  Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis , 2005, Nature Cell Biology.

[70]  W. Jin,et al.  Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Harmit S. Malik Mimulus finds centromeres in the driver's seat. , 2005, Trends in ecology & evolution.

[72]  S. Saitoh,et al.  Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  J. Willis,et al.  A Novel Meiotic Drive Locus Almost Completely Distorts Segregation in Mimulus (Monkeyflower) Hybrids , 2005, Genetics.

[74]  H. Willard,et al.  Analysis of the centromeric regions of the human genome assembly. , 2004, Trends in genetics : TIG.

[75]  S. Henikoff,et al.  Adaptive evolution of the histone fold domain in centromeric histones. , 2004, Molecular biology and evolution.

[76]  S. Henikoff,et al.  Adaptive evolution of centromere proteins in plants and animals , 2004, Journal of biology.

[77]  Karolin Luger,et al.  Structural determinants for generating centromeric chromatin , 2004, Nature.

[78]  W. Earnshaw,et al.  Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads , 1989, Chromosoma.

[79]  W. Earnshaw,et al.  Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma , 2004, Chromosoma.

[80]  R. Allshire,et al.  Kinetochore and heterochromatin domains of the fission yeast centromere , 2004, Chromosome Research.

[81]  B. Migeon,et al.  Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome , 2004, Chromosoma.

[82]  Steven Henikoff,et al.  Phylogenomics of the nucleosome , 2003, Nature Structural Biology.

[83]  Gary H Karpen,et al.  Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.

[84]  S. Henikoff,et al.  Centromere Targeting Element within the Histone Fold Domain of Cid , 2002, Molecular and Cellular Biology.

[85]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[86]  A. Daniel Distortion of female meiotic segregation and reduced male fertility in human Robertsonian translocations: consistent with the centromere model of co-evolving centromere DNA/centromeric histone (CENP-A). , 2002, American journal of medical genetics.

[87]  J. Searle,et al.  The effect of multiple simple Robertsonian heterozygosity on chromosome pairing and fertility of wild-stock house mice (Mus musculus domesticus) , 2002, Cytogenetic and Genome Research.

[88]  F. Blattner,et al.  Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003079. , 2002, The Plant Cell Online.

[89]  S. Henikoff,et al.  Centromeres: Selfish drivers , 2002, Nature.

[90]  S. Henikoff,et al.  Centromeric Localization and Adaptive Evolution of an Arabidopsis Histone H3 Variant Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010425. , 2002, The Plant Cell Online.

[91]  S. Henikoff,et al.  Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Willis,et al.  A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. , 2001, Genetics.

[93]  C. Sapienza,et al.  Female meiosis drives karyotypic evolution in mammals. , 2001, Genetics.

[94]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[95]  J. Willis,et al.  EVIDENCE FOR DOBZHANSKY‐MULLER INCOMPATIBILITES CONTRIBUTING TO THE STERILITY OF HYBRIDS BETWEEN MIMULUS GUTTATUS AND M. NASUTUS , 2001, Evolution; international journal of organic evolution.

[96]  G. Karpen,et al.  Centromere identity in Drosophila is not determined in vivo by replication timing , 2001, The Journal of cell biology.

[97]  M. Handel,et al.  Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. , 2001, Journal of cell science.

[98]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[99]  C. Sapienza,et al.  Nonrandom segregation during meiosis: the unfairness of females , 2001, Mammalian Genome.

[100]  S. Henikoff,et al.  Adaptive evolution of Cid, a centromere-specific histone in Drosophila. , 2001, Genetics.

[101]  K. Sullivan,et al.  Chromatin Assembly at Kinetochores Is Uncoupled from DNA Replication , 2000, The Journal of cell biology.

[102]  R. Baker,et al.  The N Terminus of the Centromere H3-Like Protein Cse4p Performs an Essential Function Distinct from That of the Histone Fold Domain , 2000, Molecular and Cellular Biology.

[103]  C. Sapienza,et al.  Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations , 2000, Human Genetics.

[104]  M. Marra,et al.  Genetic definition and sequence analysis of Arabidopsis centromeres. , 1999, Science.

[105]  C. Langley,et al.  Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. , 1999, Genetics.

[106]  J. Widom,et al.  Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. , 1999, Journal of molecular biology.

[107]  J. Hausser,et al.  Meiotic drive favors Robertsonian metacentric chromosomes in the common shrew (Sorex araneus, Insectivora, Mammalia) , 1999, Cytogenetic and Genome Research.

[108]  H. Hauffe,et al.  Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy. , 1998, Genetics.

[109]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[110]  P. Sorger,et al.  Centromeric Chromatin and Epigenetic Effects in Kinetochore Assembly , 1998, Cell.

[111]  G. Karpen,et al.  Centromeres Take Flight: Alpha Satellite and the Quest for the Human Centromere , 1998, Cell.

[112]  L. Clarke,et al.  Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. , 1998, Current opinion in genetics & development.

[113]  C. Tyler-Smith,et al.  Neocentromeres, the Y chromosome and centromere evolution. , 1998, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology.

[114]  G. Karpen,et al.  Neocentromere activity of structurally acentric mini-chromosomes in Drosophila , 1998, Nature Genetics.

[115]  G. Karpen,et al.  The case for epigenetic effects on centromere identity and function. , 1997, Trends in genetics : TIG.

[116]  C. Tyler-Smith,et al.  Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres , 1997, Current Biology.

[117]  K. Sullivan,et al.  Assembly of CENP-A into Centromeric Chromatin Requires a Cooperative Array of Nucleosomal DNA Contact Sites , 1997, The Journal of cell biology.

[118]  W. Earnshaw,et al.  The Centromere: Hub of Chromosomal Activities , 1995, Science.

[119]  S. Schwartz,et al.  Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. , 1995, Human molecular genetics.

[120]  T. Krude Chromatin: Nucleosome assembly during DNA replication , 1995, Current Biology.

[121]  S. Stoler,et al.  A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. , 1995, Genes & development.

[122]  K. Sullivan,et al.  Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere , 1994, The Journal of cell biology.

[123]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[124]  J. Hegemann,et al.  The centromere of budding yeast , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[125]  L. Voullaire,et al.  A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? , 1993, American journal of human genetics.

[126]  G. Dover,et al.  Evolution of genetic redundancy for advanced players. , 1993, Current opinion in genetics & development.

[127]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[128]  J. Hegemann,et al.  A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.

[129]  R. Margolis,et al.  A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones , 1987, The Journal of cell biology.

[130]  T. Pollard,et al.  Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen , 1987, The Journal of cell biology.

[131]  T. Hsu,et al.  Anti-kinetochore antibodies: use as probes for inactive centromeres. , 1985, American journal of human genetics.

[132]  K. Bloom,et al.  Chromatin conformation of yeast centromeres , 1984, The Journal of cell biology.

[133]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[134]  N. Fechheimer,et al.  Gametic products transmitted by chickens heterozygous for chromosomal rearrangements. , 1979, Cytogenetics and cell genetics.

[135]  J. Gall,et al.  Chromosomal Localization of Mouse Satellite DNA , 1970, Science.

[136]  E. Novitski,et al.  Meiotic Drive as an Evolutionary Force , 1957, The American Naturalist.