Antimicrobial, Mechanical, and Moisture Barrier Properties of Low pH Whey Protein-based Edible Films Containing p-Aminobenzoic or Sorbic Acids

Low pH (5.2) whey protein isolate-based edible films containing p-aminobenzoic acid (PABA) or sorbic acid (SA) were developed and assessed for inhibition of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium DT104 in a disc diffusion assay. Water vapor permeability (WVP), tensile strength (TS), and percent elongation (%E) were also determined. Using 1.5% PABA and SA, average inhibition zone diameters were 21.8, 14.6, 13.9, and 26.7, 10.5, 9.7 mm for L. monocytogenes, E. coli O157:H7, and S. Typhimurium DT104, respectively. Three strains of S. Typhimurium DT104 were resistant to 0.5% SA. Addition of PABA and SA increased %E, but decreased TS. WVP was not affected by 0.5% and 0.75% SA; however, PABA increased WVP. Incorporer des agents antimicrobiens dans des films comestibles est une nouvelle methode pour accroitre l'innocuite et la duree de conservation de produits alimentaires prets a l'emploi. L'acide sorbique et surtout l'acide p-aminobenzoique ont une activite inhibitrice contre L. monocytogenes, E. coli et Salmonella enteridis. Dans cette etude, des films comestibles a base de proteines de lactoserum, a faible pH (5,2), contenant l'un de ces acides sont developpes et testes pour l'inhibition de L. monocytogenes, E. coli et Salmonella typhimurium. 3 souches de S. typhimurium sont resistantes a 0,5% d'acide sorbique. L'addition d'acide p-aminobenzoique et d'acide sorbique augmente le pourcentage d'elongation mais reduit la force de tension. La permeabilite a la vapeur d'eau n'est pas affectee par l'acide sorbique mais augmentee par l'acide p-aminobenzoique.

[1]  L. Restaino,et al.  Effects of Acids on Potassium Sorbate Inhibition of Food‐Related Microorganisms in Culture Media , 1982 .

[2]  G. Inglett,et al.  Industrial uses of gluten , 1971 .

[3]  J. Wells,et al.  A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. , 1994, JAMA.

[4]  J. Synowiecki,et al.  Heat-induced changes in sulfhydryl groups of harp seal muscle proteins , 1991 .

[5]  M. Stratford,et al.  Organic acids and esters , 2003 .

[6]  J. Wells,et al.  An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. , 1993, JAMA.

[7]  E. H. Marth,et al.  Inhibition and Inactivation of Listeria monocytogenes by Sorbic Acid. , 1988, Journal of food protection.

[8]  N. Gontard,et al.  Technology and applications of edible protective films , 1995 .

[9]  Jonathan C Allen,et al.  Calcium binding and salt-induced structural changes of native and preheated .beta.-lactoglobulin , 1994 .

[10]  T. King,et al.  Activity of p-aminobenzoic acid compared with other organic acids against selected bacteria. , 1995, The Journal of applied bacteriology.

[11]  R. Avena-Bustillos,et al.  Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects , 1993 .

[12]  Curtis L. Weller,et al.  MECHANICAL AND BARRIER PROPERTIES OF EDIBLE CORN AND WHEAT PROTEIN FILMS , 1991 .

[13]  J J Kester,et al.  EDIBLE FILMS AND COATINGS: A REVIEW , 1986 .

[14]  M. Doyle,et al.  Fate of enterohemorrhagic Escherichia coli O157:H7 in apple cider with and without preservatives , 1993, Applied and environmental microbiology.

[15]  T. McHugh,et al.  Water vapor permeability properties of edible whey protein-lipid emulsion films , 1994 .

[16]  C. L. Weller,et al.  Edible films and coatings from soymilk and soy protein , 1991 .

[17]  J. Sofos,et al.  BEHAVIOR OF LISTERIA MONOCYTOGENES IN RECONSTITUTED INFANT CEREALS , 2003 .

[18]  R. Avena-Bustillos,et al.  Water Vapor Permeability of Caseinate-Based Edible Films as Affected by pH, Calcium Crosslinking and Lipid Content , 1993 .

[19]  T. Furia Handbook of Food Additives , 1968 .

[20]  M. Doyle,et al.  Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces , 1996, Applied and environmental microbiology.

[21]  Inyee Y. Han,et al.  Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. , 1998, Journal of food protection.

[22]  M. Glynn,et al.  Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. , 1998, The New England journal of medicine.

[23]  Aristippos Gennadios,et al.  Modification of Physical and Barrier Properties of Edible Wheat Gluten-Based Films , 1993 .

[24]  Mumtaz Ali,et al.  Effect of gamma radiation on chicken liver catheptic activity and release of lysosomal cathepsin D , 1975 .

[25]  L. Shelef,et al.  INFLUENCE OF FAT CONTENT AND PRESERVATIVES ON THE BEHAVIOR OF LISTERIA MONOCYTOGENES IN BEAKER SAUSAGE , 1996 .

[26]  M. Mathlouthi,et al.  Food packaging and preservation : theory and practice , 1986 .

[27]  E. H. Marth,et al.  Behavior of Listeria monocytogenes at 7, 13, 21, and 35°C in Tryptose Broth Acidified with Acetic, Citric, or Lactic Acid. , 1989, Journal of food protection.

[28]  J. Morris,et al.  A new route of transmission for Escherichia coli: infection from dry fermented salami. , 1996, American journal of public health.

[29]  C. Chou,et al.  Injury, Inhibition and Inactivation ofEscherichia coli O157:H7 by Potassium Sorbate and Sodium Nitrite as Affected by pH and Temperature , 1996 .

[30]  G. Siragusa,et al.  INHIBITION OF LISTERIA MONOCYTOGENES, SALMONELLA TYPHIMURIUM AND ESCHERICHIA COLI 0157:H7 ON BEEF MUSCLE TISSUE BY LACTIC OR ACETIC ACID CONTAINED IN CALCIUM ALGINATE GELS , 1993 .

[31]  H. Chen,et al.  Functional Properties of Edible Films Using Whey Protein Concentrate , 1995 .

[32]  T. McHugh,et al.  Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties , 1994 .

[33]  G. R. Schmidt,et al.  Listeria monocytogenes Inhibition in Refrigerated Vacuum Packaged Turkey Bologna by Chemical Additives , 1994 .

[34]  P. Elliott,et al.  Salmonella Sensitivity in a Sorbate/Modified Atmosphere Combination System. , 1981, Journal of food protection.

[35]  W. Sandine,et al.  Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats , 1997 .

[36]  Erich. . Lueck,et al.  Antimicrobial Food Additives: Characteristics, Uses, Effects , 1980 .

[37]  J. Krochta,et al.  Milk-protein-based edible films and coatings , 1994 .

[38]  B. Chiang,et al.  ANTIMICROBIAL AND PHYSICOCHEMICAL PROPERTIES OF METHYLCELLULOSE AND CHITOSAN FILMS CONTAINING A PRESERVATIVE , 1996 .

[39]  H. Klostermeyer,et al.  Heat-induced changes in sulphydryl and disulphide levels of β-lactoglobulin A and the formation of polymers , 1976, Journal of Dairy Research.

[40]  J. Kinsella,et al.  Enhanced thermodynamic stability of beta-lactoglobulin at low pH. A possible mechanism. , 1988, The Biochemical journal.

[41]  S. Ingham,et al.  Combinations of Intervention Treatments Resulting in 5-Log10-Unit Reductions in Numbers of Escherichia coli O157:H7 and Salmonella typhimurium DT104 Organisms in Apple Cider , 1999, Applied and Environmental Microbiology.

[42]  J. Cheftel,et al.  Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate , 1989 .

[43]  E. H. Marth,et al.  Survival of Listeria monocytogenes in Cold-Pack Cheese Food During Refrigerated Storage. , 1988, Journal of food protection.

[44]  A. Michaels,et al.  Conditioned Polyethylene as a Permselective Membrane. Separation of Isomeric Xylenes , 1962 .