Estimating snow mass in North America through assimilation of AMSR-E brightness temperature observations using the Catchment land surface model and support vector machines

[1]  Zong‐Liang Yang,et al.  Assimilation of Remotely Sensed LAI Into CLM4CN Using DART , 2019, Journal of Advances in Modeling Earth Systems.

[2]  Yuan Xue,et al.  Atmospheric and Forest Decoupling of Passive Microwave Brightness Temperature Observations Over Snow-Covered Terrain in North America , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  Yuan Xue,et al.  Integration of satellite-based passive microwave brightness temperature observations and an ensemble-based land data assimilation framework to improve snow estimation in forested regions , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  M. Durand,et al.  Comparison of Methods to Estimate Snow Water Equivalent at the Mountain Range Scale: A Case Study of the California Sierra Nevada , 2017 .

[5]  Barton A. Forman,et al.  Machine learning predictions of passive microwave brightness temperature over snow-covered land using the special sensor microwave imager (SSM/I) , 2017 .

[6]  Steven A. Margulis,et al.  Estimating snow water equivalent in a Sierra Nevada watershed via spaceborne radiance data assimilation , 2017 .

[7]  X. Zeng,et al.  Why Do Global Reanalyses and Land Data Assimilation Products Underestimate Snow Water Equivalent , 2016 .

[8]  Gabrielle De Lannoy,et al.  Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation , 2016 .

[9]  Rolf H. Reichle,et al.  The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales , 2015 .

[10]  B. Forman,et al.  Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and the Advanced Microwave Scanning Radiometer , 2015 .

[11]  Rolf Reichle,et al.  Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Brightness Temperatures Over Snow-Covered Land in North America , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Steven A. Margulis,et al.  Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques , 2014 .

[13]  Chunlin Huang,et al.  Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth , 2014 .

[14]  B. Rockel,et al.  A regional climate model hindcast for Siberia: analysis of snow water equivalent , 2013 .

[15]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[16]  Chris Derksen,et al.  Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements , 2011 .

[17]  M. Rodell,et al.  Assimilation of terrestrial water storage from GRACE in a snow‐dominated basin , 2011 .

[18]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[19]  S. Margulis,et al.  Assimilation of multiresolution radiation products into a downwelling surface radiation model: 2. Posterior ensemble implementation , 2010 .

[20]  Peter Toose,et al.  Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data , 2010 .

[21]  Parag S. Narvekar,et al.  Assessment of the NASA AMSR-E SWE Product , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  T. Jonas,et al.  Estimating the snow water equivalent from snow depth measurements in the Swiss Alps , 2009 .

[23]  Edward J. Kim,et al.  Radiance assimilation shows promise for snowpack characterization , 2009 .

[24]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[25]  Christopher A. Hiemstra,et al.  A Simple Data Assimilation System for Complex Snow Distributions (SnowAssim) , 2008 .

[26]  Edward J. Kim,et al.  Quantifying Uncertainty in Modeling Snow Microwave Radiance for a Mountain Snowpack at the Point-Scale, Including Stratigraphic Effects , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Chris Derksen,et al.  The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals , 2008 .

[28]  Zong-Liang Yang,et al.  Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter , 2008 .

[29]  Steven A. Margulis,et al.  Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction , 2008 .

[30]  Jiancheng Shi,et al.  Study of Atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Steven A. Margulis,et al.  Correcting first‐order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme , 2007 .

[32]  G. McCabe,et al.  Assimilation of snow covered area information into hydrologic and land-surface models , 2006 .

[33]  James R. Wang,et al.  Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping , 2006, IEEE Geoscience and Remote Sensing Letters.

[34]  M. Clark,et al.  Snow Data Assimilation via an Ensemble Kalman Filter , 2006 .

[35]  Jouni Pulliainen,et al.  Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations , 2006 .

[36]  Roger C. Bales,et al.  Scaling snow observations from the point to the grid element: Implications for observation network design , 2005 .

[37]  Paul R. Houser,et al.  Factors affecting remotely sensed snow water equivalent uncertainty , 2005 .

[38]  Chris Derksen,et al.  Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada , 2005 .

[39]  Edward G. Josberger,et al.  Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains , 2005 .

[40]  Matthias Drusch,et al.  ECMWF's Global Snow Analysis: Assessment and Revision Based on Satellite Observations , 2004 .

[41]  R. Koster,et al.  Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation , 2003 .

[42]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[43]  David Robinson,et al.  Gridded North American monthly snow depth and snow water equivalent for GCM evaluation , 2003 .

[44]  R. Koster,et al.  A catchment-based approach to modeling land surface processes in a general circulation model , 2000 .

[45]  B. Brasnett,et al.  A Global Analysis of Snow Depth for Numerical Weather Prediction , 1999 .

[46]  Martti Hallikainen,et al.  HUT snow emission model and its applicability to snow water equivalent retrieval , 1999, IEEE Trans. Geosci. Remote. Sens..

[47]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[48]  Jon Holmgren,et al.  A Seasonal Snow Cover Classification System for Local to Global Applications. , 1995 .

[49]  Marc Lynch-Stieglitz,et al.  The development and validation of a simple snow model for the GISS GCM , 1994 .

[50]  Christian Mätzler,et al.  Passive microwave signatures of landscapes in winter , 1994 .

[51]  Leung Tsang,et al.  A Neural Network Approach to Inversion of Snow Water Equivalent from Passive Microwave Measurements , 1992 .

[52]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[53]  Chris Derksen,et al.  Estimating Passive Microwave Brightness Temperature Over Snow-Covered Land in North America Using a Land Surface Model and an Artificial Neural Network , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[54]  A. Barrett,et al.  National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC , 2003 .

[55]  J. Pulliainen Retrieval of Regional Snow Water Equivalent from Space-Borne Passive Microwave Observations , 2001 .

[56]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[57]  Frank J. Wentz,et al.  Algorithm Theoretical Basis Document (ATBD) AMSR Level 2A Algorithm , 2000 .

[58]  Tosio Koike,et al.  Passive-microwave remote sensing of snow , 1993, Annals of Glaciology.

[59]  J. Foster,et al.  Nimbus-7 SMMR Derived Global Snow Cover Parameters , 1987, Annals of Glaciology.

[60]  Thomas J. Buchanan,et al.  Discharge measurements at gaging stations , 1969 .