The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase

[1]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[2]  Shigeyuki Yokoyama,et al.  Structural Basis for Substrate Selection by T7 RNA Polymerase , 2004, Cell.

[3]  Sean J. Johnson,et al.  Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  George Oster,et al.  Rotary protein motors. , 2003, Trends in cell biology.

[5]  P. Yeagle,et al.  A conformational trigger for activation of a G protein by a G protein-coupled receptor. , 2003, Biochemistry.

[6]  A. D. Clark,et al.  Structures of HIV‐1 reverse transcriptase with pre‐ and post‐translocation AZTMP‐terminated DNA , 2002, The EMBO journal.

[7]  N. Volkmann,et al.  Microscopic evidence for a minus‐end‐directed power stroke in the kinesin motor ncd , 2002, The EMBO journal.

[8]  S. Yokoyama,et al.  Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution , 2002, Nature.

[9]  Roger Cooke,et al.  Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy , 2002, Nature Structural Biology.

[10]  T. Steitz,et al.  Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase , 2002, Science.

[11]  R. Woodgate,et al.  Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. , 2002, DNA repair.

[12]  A. Marx,et al.  Molecular Insights into Error‐Prone DNA Replication and Error‐Free Lesion Bypass , 2002, Chembiochem : a European journal of chemical biology.

[13]  Matthew J Tyska,et al.  The myosin power stroke. , 2002, Cell motility and the cytoskeleton.

[14]  M. Goodman Error-prone repair DNA polymerases in prokaryotes and eukaryotes. , 2002, Annual review of biochemistry.

[15]  R. Woodgate,et al.  Crystal Structure of a Y-Family DNA Polymerase in Action A Mechanism for Error-Prone and Lesion-Bypass Replication , 2001, Cell.

[16]  J Navaza,et al.  Implementation of molecular replacement in AMoRe. , 2001, Acta crystallographica. Section D, Biological crystallography.

[17]  T. Steitz,et al.  Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. , 2001, Molecular cell.

[18]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[19]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[20]  R. Sousa,et al.  T7 RNA polymerase elongation complex structure and movement. , 2000, Journal of molecular biology.

[21]  M. Reedy,et al.  Visualizing myosin's power stroke in muscle contraction. , 2000, Journal of cell science.

[22]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[23]  C. Bustamante,et al.  Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. , 2000, Science.

[24]  T. Steitz,et al.  Structure of a transcribing T7 RNA polymerase initiation complex. , 1999, Science.

[25]  T. Steitz,et al.  Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex , 1999, Cell.

[26]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[27]  T. Steitz DNA Polymerases: Structural Diversity and Common Mechanisms* , 1999, The Journal of Biological Chemistry.

[28]  J. Rose,et al.  Low-salt crystallization of T7 RNA polymerase: a first step towards the transcription bubble complex. , 1999, Acta crystallographica. Section D, Biological crystallography.

[29]  T. Steitz,et al.  Structural basis for initiation of transcription from an RNA polymerase–promoter complex , 1999, Nature.

[30]  S. Doublié,et al.  The mechanism of action of T7 DNA polymerase. , 1998, Current opinion in structural biology.

[31]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[32]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[33]  M. Dreyfus,et al.  NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. , 1998, Journal of molecular biology.

[34]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[35]  P. V. Hippel,et al.  An Integrated Model of the Transcription Complex in Elongation, Termination, and Editing , 1998 .

[36]  T. Steitz,et al.  Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme , 1998, The EMBO journal.

[37]  G. Waksman,et al.  Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates , 1998, Protein science : a publication of the Protein Society.

[38]  Robert Landick,et al.  RNA Polymerase as a Molecular Motor , 1998, Cell.

[39]  T. Elston,et al.  Force generation in RNA polymerase. , 1998, Biophysical journal.

[40]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[41]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[42]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[43]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[44]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[45]  R. Landick RNA Polymerase Slides Home: Pause and Termination Site Recognition , 1997, Cell.

[46]  R. Sousa,et al.  A model for the mechanism of polymerase translocation. , 1997, Journal of molecular biology.

[47]  T. Steitz,et al.  Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. , 1997, Cell.

[48]  D. K. Hawley,et al.  Promoter Proximal Sequences Modulate RNA Polymerase II Elongation by a Novel Mechanism , 1996, Cell.

[49]  S. Schmid,et al.  Dynamin GTPase, a force‐generating molecular switch , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[50]  J. Kraut,et al.  Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. , 1996, Biochemistry.

[51]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[52]  R. Sousa,et al.  A mutant T7 RNA polymerase as a DNA polymerase. , 1995, The EMBO journal.

[53]  C. M. Joyce,et al.  Deoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (*) , 1995, The Journal of Biological Chemistry.

[54]  T. Steitz,et al.  A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. , 1994, Science.

[55]  M. Sheetz,et al.  Mechanics of myosin motor: force and step size. , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[56]  T. Steitz,et al.  Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. , 1993, Biochemistry.

[57]  Yong Je Chung,et al.  Structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993 .

[58]  Yong Je Chung,et al.  Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993, Nature.

[59]  D. Patra,et al.  Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination. , 1992, Journal of molecular biology.

[60]  M. Sheetz,et al.  Transcription by single molecules of RNA polymerase observed by light microscopy , 1991, Nature.

[61]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. , 1991, Biochemistry.

[62]  R. Lahti,et al.  Intracellular PPi concentration is not directly dependent on amount of inorganic pyrophosphatase in Escherichia coli K-12 cells , 1989, Journal of bacteriology.

[63]  C. Martin,et al.  Processivity in early stages of transcription by T7 RNA polymerase. , 1988, Biochemistry.

[64]  M. Chamberlin,et al.  Purified RNA polymerase II recognizes specific termination sites during transcription in vitro. , 1987, The Journal of biological chemistry.

[65]  R. Kornberg,et al.  Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones , 1987, Cell.

[66]  C. Richardson,et al.  Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[67]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[68]  P. V. von Hippel,et al.  Protein-nucleic acid interactions in transcription: a molecular analysis. , 1984, Annual review of biochemistry.

[69]  J. Heinonen,et al.  The intracellular concentration of pyrophosphate in the batch culture of Escherichia coli. , 1982, European journal of biochemistry.

[70]  C. Chothia,et al.  Hydrophobic bonding and accessible surface area in proteins , 1974, Nature.

[71]  R. Knippers,et al.  DNA Polymerase II , 1970, Nature.

[72]  J. Krakow,et al.  Azotobacter vinelandii ribonucleic acid polymerase. 8. Pyrophosphate exchange. , 1969, The Journal of biological chemistry.

[73]  J. Krakow AZOTOBACTER VINELANDII RIBONUCLEIC ACID POLYMERASE. I. INHIBITION BY CONGO RED. , 1965, Biochimica et biophysica acta.