“Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness”

Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information.

[1]  G. Pfurtscheller,et al.  Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Ana-Maria Cebolla,et al.  Gravity Influences Top-Down Signals in Visual Processing , 2014, PloS one.

[3]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[4]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  Ana-Maria Cebolla,et al.  Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential , 2011, NeuroImage.

[6]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[7]  Gilles Clément,et al.  Neurovestibular and sensorimotor studies in space and Earth benefits. , 2005, Current pharmaceutical biotechnology.

[8]  J. Palva,et al.  Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Kleinfeld,et al.  Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. , 2002, Journal of neurophysiology.

[10]  A. Kleinschmidt,et al.  Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/Functional Magnetic Resonance Imaging Study , 2010, The Journal of Neuroscience.

[11]  Alejandro Lleras,et al.  Trial History Effects in the Ventral Attentional Network , 2014, Journal of Cognitive Neuroscience.

[12]  R L Maulsby Electroencephalogram during orbital flight. , 1966, Aerospace medicine.

[13]  Alain Berthoz,et al.  Gravity and spatial orientation in virtual 3D-mazes. , 2003, Journal of vestibular research : equilibrium & orientation.

[14]  E. Adrian,et al.  THE BERGER RHYTHM: POTENTIAL CHANGES FROM THE OCCIPITAL LOBES IN MAN , 1934 .

[15]  Mary Lou Coad,et al.  Mapping the 40-Hz auditory steady-state response using current density reconstructions , 2005, Hearing Research.

[16]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[17]  G. Cheron From biomechanics to sport psychology: the current oscillatory approach , 2015, Front. Psychol..

[18]  Yuguo Yu,et al.  Neocortical Networks Entrain Neuronal Circuits in Cerebellar Cortex , 2009, The Journal of Neuroscience.

[19]  S. Debener,et al.  Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention , 2007, Journal of Neural Transmission.

[20]  G. Orlovsky,et al.  Nervous mechanisms controlling body posture , 2007, Physiology & Behavior.

[21]  A. Berthoz,et al.  Weightlessness alters up/down asymmetries in the perception of self-motion , 2013, Experimental Brain Research.

[22]  Peter Fransson,et al.  The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis , 2008, NeuroImage.

[23]  Gilles Clément,et al.  Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures , 2015, PloS one.

[24]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[25]  Olivier White,et al.  Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips? , 2005, Experimental Brain Research.

[26]  Jennifer C. Robinson,et al.  Linking oscillations in cerebellar circuits , 2013, Front. Neural Circuits.

[27]  C. Frith,et al.  Comment on "Wandering Minds: The Default Network and Stimulus-Independent Thought" , 2007, Science.

[28]  D. Pandya,et al.  The cerebrocerebellar system. , 1997, International review of neurobiology.

[29]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[30]  I. Daly,et al.  Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task , 2013, Neuroscience Letters.

[31]  F. L. D. Silva,et al.  Event-Related Desynchronization , 1999 .

[32]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[33]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[34]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[35]  G. Pfurtscheller,et al.  Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man , 1994, Neuroscience Letters.

[36]  Ana-Maria Cebolla,et al.  Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system , 2014, NeuroImage.

[37]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[38]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[39]  G. Knyazev,et al.  The default mode network and EEG alpha oscillations: An independent component analysis , 2011, Brain Research.

[40]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Lemon,et al.  Corticospinal neurons with a special role in precision grip , 1983, Brain Research.

[42]  A. Stancák,et al.  Emotional modulation of experimental pain: a source imaging study of laser evoked potentials , 2013, Front. Hum. Neurosci..

[43]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[44]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: I. Increases in Subcortical Structures and Cerebellum but Not in Nonvisual Cortex , 1997, Journal of Cognitive Neuroscience.

[45]  Y. Lamarre,et al.  Local field potential oscillations in primate cerebellar cortex during voluntary movement. , 1997, Journal of neurophysiology.

[46]  Anders M. Dale,et al.  Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain , 2004, NeuroImage.

[47]  G. Cheron,et al.  Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction , 2006, Brain Research.

[48]  Alain Berthoz,et al.  The perception of visually presented yaw and pitch turns: Assessing the contribution of motion, static, and cognitive cues , 2006, Perception & psychophysics.

[49]  H. Berger On the electroencephalogram of man. , 1969, Electroencephalography and clinical neurophysiology.

[50]  G. Holmes Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology, Revised Series, Volume 6 Edited by G. Pfurtscheller and F.H. Lopes da Silva. Elsevier Science B.V., Amsterdam, 1999, 406 pp., $236.00 , 2002, Epilepsy Research.

[51]  Peter A Tass,et al.  swLORETA: a novel approach to robust source localization and synchronization tomography , 2007, Physics in medicine and biology.

[52]  A. R. Anwar,et al.  Dynamic Imaging of Coherent Sources Reveals Different Network Connectivity Underlying the Generation and Perpetuation of Epileptic Seizures , 2013, PloS one.

[53]  J B West,et al.  Microgravity reduces sleep-disordered breathing in humans. , 2001, American journal of respiratory and critical care medicine.

[54]  B. Molyneaux,et al.  Myosin V in the brain: mutations lead to neurological defects , 1998, Brain Research Reviews.

[55]  Philippe Kahane,et al.  Reappraisal of the human vestibular cortex by cortical electrical stimulation study , 2003, Annals of neurology.

[56]  Yves Lamarre,et al.  Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. , 2005, Journal of neurophysiology.

[57]  H. Berger Über das Elektrenkephalogramm des Menschen , 1933, Archiv für Psychiatrie und Nervenkrankheiten.

[58]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[59]  P. Hazemann,et al.  Handbook of Electroencephalography and Clinical Neurophysiology , 1975 .

[60]  J. Winn,et al.  Brain , 1878, The Lancet.

[61]  Yanling Yin,et al.  EEG default mode network in the human brain: Spectral regional field powers , 2008, NeuroImage.